סיווג נקודה חשודה: הבדלים בין גרסאות בדף
יהודה שמחה (שיחה | תרומות) אין תקציר עריכה |
|||
(2 גרסאות ביניים של אותו משתמש אינן מוצגות) | |||
שורה 2: | שורה 2: | ||
==הגדרת נקודה חשודה== | ==הגדרת נקודה חשודה== | ||
תהי f פונקציה ממשית. נקודה x בתחום ההגדרה של f נקראת חשודה אם <math>f'(x)=0</math> או שהנגזרת אינה מוגדרת ב-x | תהי <math>f</math> פונקציה ממשית. נקודה <math>x</math> בתחום ההגדרה של <math>f</math> נקראת חשודה אם <math>f'(x)=0</math> או שהנגזרת אינה מוגדרת ב- <math>x</math> . | ||
==סיווג נקודות חשודות== | ==סיווג נקודות חשודות== | ||
'''משפט | '''משפט:''' תהי <math>f</math> פונקציה הגזירה '''ברציפות''' <math>n+1</math> פעמים בסביבת הנקודה <math>a</math> . עוד נניח כי | ||
:<math>\begin{align}f'(a)=f''(a)=\cdots=f^{(n)}(a)=0\\f^{(n+1)}(a)\ne0\end{align}</math> | |||
אזי: | אזי: | ||
*אם n+1 זוגי וגם <math>f^{(n+1)}(a)>0</math>אזי a '''[[נקודת קיצון|נקודת מינימום מקומי]]''' | *אם <math>n+1</math> זוגי וגם <math>f^{(n+1)}(a)>0</math> אזי <math>a</math> '''[[נקודת קיצון|נקודת מינימום מקומי]]'''. | ||
*אם n+1 זוגי וגם <math>f^{(n+1)}(a)<0</math>אזי a '''[[נקודת קיצון|נקודת מקסימום מקומי]]''' | *אם <math>n+1</math> זוגי וגם <math>f^{(n+1)}(a)<0</math> אזי <math>a</math> '''[[נקודת קיצון|נקודת מקסימום מקומי]]'''. | ||
*אם 1 | *אם <math>n+1</math> אי-זוגי אזי <math>a</math> [[נקודת פיתול]]. | ||
==='''הוכחה:'''=== | |||
לפי [[משפט טיילור עם שארית לגראנז'|טיילור]] לכל <math>x</math> בסביבה קיימת נקודה <math>c</math> בין <math>x</math> לבין <math>a</math> כך ש: | |||
:<math>f(x)=f(a)+f'(a)(x-a)+\cdots+\dfrac{f^{(n)}(a)}{n!}+\dfrac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}</math> | |||
אבל לפי ההנחה כי <math>n</math> הנגזרות הראשונות מתאפסות ב- <math>a</math> , מתקיים | |||
:<math>f(x)-f(a)=\dfrac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}</math> | |||
לכן, אם <math>n+1</math> זוגי וגם <math>f^{(n+1)}(a)>0</math> לפי רציפות הנגזרת השניה קיימת סביבת <math>a</math> בה <math>f^{(n+1)}>0</math> ולכן לכל <math>x</math> בסביבה מתקיים: | |||
:<math>f(x)-f(a)\ge0</math> | |||
שכן <math>(x-a)^{(n+1)}\ge0</math> תמיד עבור <math>n+1</math> זוגי. | |||
כלומר אם <math>f^{(n+1)}(a)>0</math> אזי <math>x</math> הנה '''[[נקודת קיצון|נקודת מינימום]]'''. | |||
באופן דומה, אם <math>f^{(n+1)}(a)<0</math> אזי <math>x</math> הנה '''[[נקודת קיצון|נקודת מקסימום]]'''. | |||
אם n+1 אי זוגי, אזי הסימן של <math>(x-a)^{(n+1)}</math> חיובי בסביבה ימנית של a ושלילי משמאלה. | אם <math>n+1</math> אי-זוגי, אזי הסימן של <math>(x-a)^{(n+1)}</math> חיובי בסביבה ימנית של <math>a</math> ושלילי משמאלה. | ||
כיון שסימן <math>f^{(n+1)}</math> קבוע בסביבת <math>a</math> , סה"כ מצד אחד <math>f(x)>f(a)</math> ומהצד השני <math>f(x)<f(a)</math> . | |||
אבל הנגזרת הראשונה מתאפסת ב-a ולכן המשיק הוא <math>y=f(a)</math>, ולכן הפונקציה קטנה ממנו בצד אחד וגדולה ממנו בצד השני ולכן a | אבל הנגזרת הראשונה מתאפסת ב- <math>a</math> ולכן המשיק הוא <math>y=f(a)</math> , ולכן הפונקציה קטנה ממנו בצד אחד וגדולה ממנו בצד השני ולכן <math>a</math> הנה '''[[נקודת פיתול]]'''. |
גרסה אחרונה מ־06:24, 14 בפברואר 2017
הגדרת נקודה חשודה
תהי [math]\displaystyle{ f }[/math] פונקציה ממשית. נקודה [math]\displaystyle{ x }[/math] בתחום ההגדרה של [math]\displaystyle{ f }[/math] נקראת חשודה אם [math]\displaystyle{ f'(x)=0 }[/math] או שהנגזרת אינה מוגדרת ב- [math]\displaystyle{ x }[/math] .
סיווג נקודות חשודות
משפט: תהי [math]\displaystyle{ f }[/math] פונקציה הגזירה ברציפות [math]\displaystyle{ n+1 }[/math] פעמים בסביבת הנקודה [math]\displaystyle{ a }[/math] . עוד נניח כי
- [math]\displaystyle{ \begin{align}f'(a)=f''(a)=\cdots=f^{(n)}(a)=0\\f^{(n+1)}(a)\ne0\end{align} }[/math]
אזי:
- אם [math]\displaystyle{ n+1 }[/math] זוגי וגם [math]\displaystyle{ f^{(n+1)}(a)\gt 0 }[/math] אזי [math]\displaystyle{ a }[/math] נקודת מינימום מקומי.
- אם [math]\displaystyle{ n+1 }[/math] זוגי וגם [math]\displaystyle{ f^{(n+1)}(a)\lt 0 }[/math] אזי [math]\displaystyle{ a }[/math] נקודת מקסימום מקומי.
- אם [math]\displaystyle{ n+1 }[/math] אי-זוגי אזי [math]\displaystyle{ a }[/math] נקודת פיתול.
הוכחה:
לפי טיילור לכל [math]\displaystyle{ x }[/math] בסביבה קיימת נקודה [math]\displaystyle{ c }[/math] בין [math]\displaystyle{ x }[/math] לבין [math]\displaystyle{ a }[/math] כך ש:
- [math]\displaystyle{ f(x)=f(a)+f'(a)(x-a)+\cdots+\dfrac{f^{(n)}(a)}{n!}+\dfrac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} }[/math]
אבל לפי ההנחה כי [math]\displaystyle{ n }[/math] הנגזרות הראשונות מתאפסות ב- [math]\displaystyle{ a }[/math] , מתקיים
- [math]\displaystyle{ f(x)-f(a)=\dfrac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} }[/math]
לכן, אם [math]\displaystyle{ n+1 }[/math] זוגי וגם [math]\displaystyle{ f^{(n+1)}(a)\gt 0 }[/math] לפי רציפות הנגזרת השניה קיימת סביבת [math]\displaystyle{ a }[/math] בה [math]\displaystyle{ f^{(n+1)}\gt 0 }[/math] ולכן לכל [math]\displaystyle{ x }[/math] בסביבה מתקיים:
- [math]\displaystyle{ f(x)-f(a)\ge0 }[/math]
שכן [math]\displaystyle{ (x-a)^{(n+1)}\ge0 }[/math] תמיד עבור [math]\displaystyle{ n+1 }[/math] זוגי.
כלומר אם [math]\displaystyle{ f^{(n+1)}(a)\gt 0 }[/math] אזי [math]\displaystyle{ x }[/math] הנה נקודת מינימום.
באופן דומה, אם [math]\displaystyle{ f^{(n+1)}(a)\lt 0 }[/math] אזי [math]\displaystyle{ x }[/math] הנה נקודת מקסימום.
אם [math]\displaystyle{ n+1 }[/math] אי-זוגי, אזי הסימן של [math]\displaystyle{ (x-a)^{(n+1)} }[/math] חיובי בסביבה ימנית של [math]\displaystyle{ a }[/math] ושלילי משמאלה.
כיון שסימן [math]\displaystyle{ f^{(n+1)} }[/math] קבוע בסביבת [math]\displaystyle{ a }[/math] , סה"כ מצד אחד [math]\displaystyle{ f(x)\gt f(a) }[/math] ומהצד השני [math]\displaystyle{ f(x)\lt f(a) }[/math] .
אבל הנגזרת הראשונה מתאפסת ב- [math]\displaystyle{ a }[/math] ולכן המשיק הוא [math]\displaystyle{ y=f(a) }[/math] , ולכן הפונקציה קטנה ממנו בצד אחד וגדולה ממנו בצד השני ולכן [math]\displaystyle{ a }[/math] הנה נקודת פיתול.