משפט בולצאנו-ויירשטראס: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
 
(4 גרסאות ביניים של 2 משתמשים אינן מוצגות)
שורה 1: שורה 1:
חזרה ל[[משפטים/אינפי|משפטים באינפי]]
==משפט בולצאנו-ויירשטראס לסדרות==
 
לכל סדרה חסומה יש תת-סדרה מתכנסת
==משפט בולצאנו ויירשטראס לסדרות==
לכל סדרה חסומה יש תת סדרה מתכנסת


==הוכחה==
==הוכחה==
ראשית, נזכר ב'''למה של קנטור'''. יהי <math>\{I_n\}</math> אוסף של קטעים סגורים <math>I_n=[a_n,b_n]</math> כך שכל אחד מוכל בקודמו (כלומר <math>a_n</math> מונוטונית לא יורדת, ו<math>b_n</math> מונוטונית לא עולה). עוד נניח כי אורך הקטעים שואף לאפס, כלומר <math>\lim_{n\rightarrow\infty}b_n-a_n =0</math>.
ראשית, נזכר ב'''למה של קנטור'''. יהי <math>\{I_n\}</math> אוסף של קטעים סגורים <math>I_n=[a_n,b_n]</math> כך שכל אחד מוכל בקודמו (כלומר <math>a_n</math> מונוטונית לא-יורדת, ו- <math>b_n</math> מונוטונית לא-עולה). עוד נניח כי אורך הקטעים שואף ל- <math>0</math> , כלומר <math>\lim\limits_{n\to\infty}\Big[b_n-a_n\Big]=0</math> .


אזי קיימת נקודה יחידה השייכת '''לכל''' הקטעים. (מתקיים באופן טבעי שנקודה זו שווה לגבול הסדרות <math>a_n,b_n</math>.)
אזי קיימת נקודה יחידה השייכת '''לכל''' הקטעים. (מתקיים באופן טבעי שנקודה זו שווה לגבול הסדרות <math>a_n,b_n</math>)




נביט כעת בסדרה חסומה <math>-M\leq a_n \leq M</math> (זכרו, הסדרה לא חייבת להיות בכל הקטע הזה, רק לא לצאת ממנו). כיוון שבסדרה ישנם אינסוף איברים, הקטע <math>I_1:=[-M,M]</math> מכיל אינסוף איברים מהסדרה.
נביט כעת בסדרה חסומה <math>-M\le a_n\le M</math> (זכרו, הסדרה לא חייבת להיות בכל הקטע הזה, רק לא לצאת ממנו). כיון שבסדרה ישנם אינסוף אברים, הקטע <math>I_1:=[-M,M]</math> מכיל אינסוף אברים מהסדרה.


נביט כעת בשני חצאי הקטע <math>[-M,0],[0,M]</math>. '''בהכרח אחד מהם לפחות מכיל אינסוף איברים מהסדרה''' (וזה עיקר הרעיון של ההוכחה). נסמן את חצי הקטע הזה ב <math>I_2</math>. נחצה את הקטע הזה לשניים, ונבחר חצי שמכיל אינסוף איברים.
נביט כעת בשני חצאי הקטע <math>[-M,0],[0,M]</math> . '''בהכרח אחד מהם לפחות מכיל אינסוף אברים מהסדרה''' (וזה עיקר הרעיון של ההוכחה). נסמן את חצי הקטע הזה <math>I_2</math> . נחצה את הקטע הזה לשניים, ונבחר חצי שמכיל אינסוף אברים.


אם כך, קיבלנו סדרה של קטעים <math>I_1\supseteq I_2 \supseteq \cdots</math> המקיימת את התכונות הבאות:
אם כך, קיבלנו סדרה של קטעים <math>I_1\supseteq I_2\supseteq\cdots</math> המקיימת את התכונות הבאות:


*כל קטע מכיל אינסוף איברים מהסדרה <math>a_n</math>
*כל קטע מכיל אינסוף אברים מהסדרה <math>a_n</math>


*כל קטע מוכל בקודמו
*כל קטע מוכל בקודמו


*אורך כל קטע הוא חצי קודמו. כיוון שאורך הקטע הראשון הינו 2M אורך הקטע <math>I_n</math> שווה ל<math>\frac{M}{2^{n-2}}</math>. ברור שאורך הקטעים שואף לאפס לכן.
*אורך כל קטע הוא חצי קודמו. כיון שאורך הקטע הראשון הנו <math>2M</math> אורך הקטע <math>I_n</math> שווה <math>\dfrac{M}{2^{n-2}}</math> . ברור שאורך הקטעים שואף ל-0




לפי הלמה של קנטור, מתקיים כי יש נקודה המוכל '''בכל''' הקטעים הללו, נקרא לה L. נוכיח כי L הינו גבול חלקי של <math>a_n</math> ובכך נסיים את ההוכחה (שכן ההגדרה של גבול חלקי הינו קיום תת סדרה השואפת אליו).
לפי הלמה של קנטור, מתקיים כי יש נקודה המוכל '''בכל''' הקטעים הללו, נקרא לה <math>L</math> . נוכיח כי <math>L</math> הנה גבול חלקי של <math>a_n</math> ובכך נסיים את ההוכחה (שכן ההגדרה של גבול חלקי הנו קיום תת-סדרה השואפת אליו).




*יהי אפסילון גדול מאפס, רוצים להוכיח כי בסביבת אפסילון של L ישנם אינסוף איברים מהסדרה.  
*יהי <math>\varepsilon>0</math> . רוצים להוכיח כי בסביבת <math>\varepsilon</math> של <math>L</math> ישנם אינסוף אברים מהסדרה.
*כיוון שאורך הקטעים שבנינו שואפים לאפס, יש קטע שאורכו קטן מאפסילון חלקי 2.  
*כיון שאורך הקטעים שבנינו שואפים ל-0, יש קטע שאורכו קטן מ- <math>\dfrac{\varepsilon}{2}</math> .
*לפי ההגדרה של L מהלמה של קנטור, L מוכל בכל הקטעים שבנינו ובפרט בקטע הקטן הזה.  
*לפי ההגדרה של <math>L</math> מהלמה של קנטור, <math>L</math> מוכל בכל הקטעים שבנינו ובפרט בקטע הקטן הזה.
*לכן בוודאי הקטע הקטן מוכל בסביבת אפסילון של L.
*לכן בודאי הקטע הקטן מוכל בסביבת <math>\varepsilon</math> של <math>L</math> .
*אבל אחת התכונות של הקטעים שבנינו היא שהם מכילים אינסוף איברים מהסדרה ולכן קיימים אינסוף איברים מהסדרה בסביבת אפסילון של L.
*אבל אחת התכונות של הקטעים שבנינו היא שהם מכילים אינסוף אברים מהסדרה ולכן קיימים אינסוף אברים מהסדרה בסביבת <math>\varepsilon</math> של <math>L</math> .
<math>\blacksquare</math>


כפי שרצינו להוכיח.
[[קטגוריה:אינפי]]

גרסה אחרונה מ־06:54, 19 ביוני 2017

משפט בולצאנו-ויירשטראס לסדרות

לכל סדרה חסומה יש תת-סדרה מתכנסת

הוכחה

ראשית, נזכר בלמה של קנטור. יהי [math]\displaystyle{ \{I_n\} }[/math] אוסף של קטעים סגורים [math]\displaystyle{ I_n=[a_n,b_n] }[/math] כך שכל אחד מוכל בקודמו (כלומר [math]\displaystyle{ a_n }[/math] מונוטונית לא-יורדת, ו- [math]\displaystyle{ b_n }[/math] מונוטונית לא-עולה). עוד נניח כי אורך הקטעים שואף ל- [math]\displaystyle{ 0 }[/math] , כלומר [math]\displaystyle{ \lim\limits_{n\to\infty}\Big[b_n-a_n\Big]=0 }[/math] .

אזי קיימת נקודה יחידה השייכת לכל הקטעים. (מתקיים באופן טבעי שנקודה זו שווה לגבול הסדרות [math]\displaystyle{ a_n,b_n }[/math])


נביט כעת בסדרה חסומה [math]\displaystyle{ -M\le a_n\le M }[/math] (זכרו, הסדרה לא חייבת להיות בכל הקטע הזה, רק לא לצאת ממנו). כיון שבסדרה ישנם אינסוף אברים, הקטע [math]\displaystyle{ I_1:=[-M,M] }[/math] מכיל אינסוף אברים מהסדרה.

נביט כעת בשני חצאי הקטע [math]\displaystyle{ [-M,0],[0,M] }[/math] . בהכרח אחד מהם לפחות מכיל אינסוף אברים מהסדרה (וזה עיקר הרעיון של ההוכחה). נסמן את חצי הקטע הזה [math]\displaystyle{ I_2 }[/math] . נחצה את הקטע הזה לשניים, ונבחר חצי שמכיל אינסוף אברים.

אם כך, קיבלנו סדרה של קטעים [math]\displaystyle{ I_1\supseteq I_2\supseteq\cdots }[/math] המקיימת את התכונות הבאות:

  • כל קטע מכיל אינסוף אברים מהסדרה [math]\displaystyle{ a_n }[/math]
  • כל קטע מוכל בקודמו
  • אורך כל קטע הוא חצי קודמו. כיון שאורך הקטע הראשון הנו [math]\displaystyle{ 2M }[/math] אורך הקטע [math]\displaystyle{ I_n }[/math] שווה [math]\displaystyle{ \dfrac{M}{2^{n-2}} }[/math] . ברור שאורך הקטעים שואף ל-0


לפי הלמה של קנטור, מתקיים כי יש נקודה המוכל בכל הקטעים הללו, נקרא לה [math]\displaystyle{ L }[/math] . נוכיח כי [math]\displaystyle{ L }[/math] הנה גבול חלקי של [math]\displaystyle{ a_n }[/math] ובכך נסיים את ההוכחה (שכן ההגדרה של גבול חלקי הנו קיום תת-סדרה השואפת אליו).


  • יהי [math]\displaystyle{ \varepsilon\gt 0 }[/math] . רוצים להוכיח כי בסביבת [math]\displaystyle{ \varepsilon }[/math] של [math]\displaystyle{ L }[/math] ישנם אינסוף אברים מהסדרה.
  • כיון שאורך הקטעים שבנינו שואפים ל-0, יש קטע שאורכו קטן מ- [math]\displaystyle{ \dfrac{\varepsilon}{2} }[/math] .
  • לפי ההגדרה של [math]\displaystyle{ L }[/math] מהלמה של קנטור, [math]\displaystyle{ L }[/math] מוכל בכל הקטעים שבנינו ובפרט בקטע הקטן הזה.
  • לכן בודאי הקטע הקטן מוכל בסביבת [math]\displaystyle{ \varepsilon }[/math] של [math]\displaystyle{ L }[/math] .
  • אבל אחת התכונות של הקטעים שבנינו היא שהם מכילים אינסוף אברים מהסדרה ולכן קיימים אינסוף אברים מהסדרה בסביבת [math]\displaystyle{ \varepsilon }[/math] של [math]\displaystyle{ L }[/math] .

[math]\displaystyle{ \blacksquare }[/math]