פונקציה רציפה במידה שווה: הבדלים בין גרסאות בדף

מתוך Math-Wiki
(יצירת דף עם התוכן "חזרה למשפטים באינפי ==משפט== פונקציה בעלת נגזרת חסומה בקטע, רציפה במ"ש באותו...")
 
אין תקציר עריכה
 
(4 גרסאות ביניים של 2 משתמשים אינן מוצגות)
שורה 1: שורה 1:
[[משפטים/אינפי|חזרה למשפטים באינפי]]
פונקציה ממשית היא '''רציפה במידה שווה''' בקטע <math>I</math> אם לכל <math>\varepsilon>0</math> קיים <math>\delta>0</math> כך שלכל <math>x,y\in I</math> אם <math>|x-y|<\delta</math> אז <math>\Big|f(x)-f(y)\Big|<\varepsilon</math> . תכונה זו גוררת [[פונקציה רציפה|רציפות]] של הפונקציה בכל נקודה, ובדרך-כלל היא חזקה יותר.


==משפט==
==משפט==
שורה 5: שורה 5:


===הוכחה===
===הוכחה===
תהי f בעלת נגזרת חסומה בקטע A. נניח בשלילה שהיא אינה רציפה במ"ש לכן קיימות שתי סדרות <math>x_n,y_n</math> בקטע המקיימות
תהי <math>f</math> בעלת נגזרת חסומה בקטע <math>A</math> . נניח בשלילה שהיא אינה רציפה במ"ש לכן קיימות שתי סדרות <math>x_n,y_n</math> בקטע המקיימות
 
:<math>|x_n-y_n|\to 0</math>
::<math>|x_n-y_n|\rightarrow 0</math>
:<math>\Big|f(x_n)-f(y_n)\Big|\not\to 0</math>
 
לכן קיימת תת-סדרה כך ש-
::<math>|f(x_n)-f(y_n)|\not\rightarrow 0</math>
:<math>\Big|f(x_{n_k)}-f(y_{n_k})\Big|\to a\ne 0</math>  
 
(זוהי תת-הסדרה המתכנסת לגבול העליון. אם הגבול העליון היה שווה 0 סדרת הערכים המוחלטים הייתה מתכנסת).
 
לכן קיימת תת סדרה כך ש:
 
::<math>|f(x_{n_k)}-f(y_{n_k})|\rightarrow a \neq 0</math>  
 
(זוהי תת הסדרה המתכנסת לגבול העליון. אם הגבול העליון היה שווה אפס סדרת הערכים המוחלטים הייתה מתכנסת).


נובע מכאן כי הסדרה
נובע מכאן כי הסדרה
 
:<math>\frac{f(x_{n_k})-f(y_{n_k})}{x_{n_k}-y_{n_k}}</math>
::<math>\frac{f(x_{n_k})-f(y_{n_k})}{x_{n_k}-y_{n_k}}</math>
 
אינה חסומה.
אינה חסומה.


אבל לפי משפט לגראנז, קיימות נקודות <math>c_{n_k}</math> בין <math>x_{n_k},y_{n_k}</math> כך ש
אבל לפי משפט לגראנז', קיימות נקודות <math>c_{n_k}</math> בין <math>x_{n_k},y_{n_k}</math> כך ש-
:<math>f'(c_{n_k})=\frac{f(x_{n_k})-f(y_{n_k})}{x_{n_k}-y_{n_k}}</math>
ולכן הנגזרת אינה חסומה, בסתירה.


::<math>f'(c_{n_k})=\frac{f(x_{n_k})-f(y_{n_k})}{x_{n_k}-y_{n_k}}</math>
[[קטגוריה:אינפי]]
 
ולכן הנגזרת אינה חסומה, בסתירה.

גרסה אחרונה מ־05:16, 19 ביוני 2017

פונקציה ממשית היא רציפה במידה שווה בקטע [math]\displaystyle{ I }[/math] אם לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] קיים [math]\displaystyle{ \delta\gt 0 }[/math] כך שלכל [math]\displaystyle{ x,y\in I }[/math] אם [math]\displaystyle{ |x-y|\lt \delta }[/math] אז [math]\displaystyle{ \Big|f(x)-f(y)\Big|\lt \varepsilon }[/math] . תכונה זו גוררת רציפות של הפונקציה בכל נקודה, ובדרך-כלל היא חזקה יותר.

משפט

פונקציה בעלת נגזרת חסומה בקטע, רציפה במ"ש באותו קטע

הוכחה

תהי [math]\displaystyle{ f }[/math] בעלת נגזרת חסומה בקטע [math]\displaystyle{ A }[/math] . נניח בשלילה שהיא אינה רציפה במ"ש לכן קיימות שתי סדרות [math]\displaystyle{ x_n,y_n }[/math] בקטע המקיימות

[math]\displaystyle{ |x_n-y_n|\to 0 }[/math]
[math]\displaystyle{ \Big|f(x_n)-f(y_n)\Big|\not\to 0 }[/math]

לכן קיימת תת-סדרה כך ש-

[math]\displaystyle{ \Big|f(x_{n_k)}-f(y_{n_k})\Big|\to a\ne 0 }[/math]

(זוהי תת-הסדרה המתכנסת לגבול העליון. אם הגבול העליון היה שווה 0 סדרת הערכים המוחלטים הייתה מתכנסת).

נובע מכאן כי הסדרה

[math]\displaystyle{ \frac{f(x_{n_k})-f(y_{n_k})}{x_{n_k}-y_{n_k}} }[/math]

אינה חסומה.

אבל לפי משפט לגראנז', קיימות נקודות [math]\displaystyle{ c_{n_k} }[/math] בין [math]\displaystyle{ x_{n_k},y_{n_k} }[/math] כך ש-

[math]\displaystyle{ f'(c_{n_k})=\frac{f(x_{n_k})-f(y_{n_k})}{x_{n_k}-y_{n_k}} }[/math]

ולכן הנגזרת אינה חסומה, בסתירה.