סיווג נקודה חשודה: הבדלים בין גרסאות בדף
יהודה שמחה (שיחה | תרומות) מאין תקציר עריכה |
יהודה שמחה (שיחה | תרומות) אין תקציר עריכה |
||
(גרסת ביניים אחת של אותו משתמש אינה מוצגת) | |||
שורה 6: | שורה 6: | ||
==סיווג נקודות חשודות== | ==סיווג נקודות חשודות== | ||
'''משפט:''' תהי <math>f</math> פונקציה הגזירה '''ברציפות''' <math>n+1</math> פעמים בסביבת הנקודה <math>a</math> . עוד נניח כי | '''משפט:''' תהי <math>f</math> פונקציה הגזירה '''ברציפות''' <math>n+1</math> פעמים בסביבת הנקודה <math>a</math> . עוד נניח כי | ||
:<math>f'(a)=f''(a)=\ | :<math>\begin{align}f'(a)=f''(a)=\cdots=f^{(n)}(a)=0\\f^{(n+1)}(a)\ne0\end{align}</math> | ||
אזי: | אזי: | ||
שורה 16: | שורה 14: | ||
==='''הוכחה:'''=== | ==='''הוכחה:'''=== | ||
לפי [[משפט טיילור עם שארית לגראנז'|טיילור]] לכל x בסביבה קיימת נקודה c בין x לבין a כך ש: | לפי [[משפט טיילור עם שארית לגראנז'|טיילור]] לכל <math>x</math> בסביבה קיימת נקודה <math>c</math> בין <math>x</math> לבין <math>a</math> כך ש: | ||
:<math>f(x)=f(a)+f'(a)(x-a)+\cdots+\ | :<math>f(x)=f(a)+f'(a)(x-a)+\cdots+\dfrac{f^{(n)}(a)}{n!}+\dfrac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}</math> | ||
אבל לפי ההנחה כי <math>n</math> הנגזרות הראשונות | אבל לפי ההנחה כי <math>n</math> הנגזרות הראשונות מתאפסות ב- <math>a</math> , מתקיים | ||
:<math>f(x)-f(a)=\ | :<math>f(x)-f(a)=\dfrac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}</math> | ||
לכן, אם <math>n+1</math> זוגי וגם <math>f^{(n+1)}(a)>0</math> לפי רציפות הנגזרת השניה קיימת | לכן, אם <math>n+1</math> זוגי וגם <math>f^{(n+1)}(a)>0</math> לפי רציפות הנגזרת השניה קיימת סביבת <math>a</math> בה <math>f^{(n+1)}>0</math> ולכן לכל <math>x</math> בסביבה מתקיים: | ||
:<math>f(x)-f(a)\ | :<math>f(x)-f(a)\ge0</math> | ||
שכן <math>(x-a)^{(n+1)}\ | שכן <math>(x-a)^{(n+1)}\ge0</math> תמיד עבור <math>n+1</math> זוגי. | ||
כלומר אם <math>f^{(n+1)}(a)>0</math> אזי <math>x</math> הנה '''[[נקודת קיצון|נקודת מינימום]]'''. | כלומר אם <math>f^{(n+1)}(a)>0</math> אזי <math>x</math> הנה '''[[נקודת קיצון|נקודת מינימום]]'''. | ||
שורה 36: | שורה 34: | ||
אם <math>n+1</math> אי-זוגי, אזי הסימן של <math>(x-a)^{(n+1)}</math> חיובי בסביבה ימנית של <math>a</math> ושלילי משמאלה. | אם <math>n+1</math> אי-זוגי, אזי הסימן של <math>(x-a)^{(n+1)}</math> חיובי בסביבה ימנית של <math>a</math> ושלילי משמאלה. | ||
כיון שסימן <math>f^{(n+1)}</math> קבוע | כיון שסימן <math>f^{(n+1)}</math> קבוע בסביבת <math>a</math> , סה"כ מצד אחד <math>f(x)>f(a)</math> ומהצד השני <math>f(x)<f(a)</math> . | ||
אבל הנגזרת הראשונה מתאפסת ב- <math>a</math> ולכן המשיק הוא <math>y=f(a)</math>, ולכן הפונקציה קטנה ממנו בצד אחד וגדולה ממנו בצד השני ולכן <math>a</math> הנה '''[[נקודת פיתול]]'''. | אבל הנגזרת הראשונה מתאפסת ב- <math>a</math> ולכן המשיק הוא <math>y=f(a)</math> , ולכן הפונקציה קטנה ממנו בצד אחד וגדולה ממנו בצד השני ולכן <math>a</math> הנה '''[[נקודת פיתול]]'''. |
גרסה אחרונה מ־06:24, 14 בפברואר 2017
הגדרת נקודה חשודה
תהי [math]\displaystyle{ f }[/math] פונקציה ממשית. נקודה [math]\displaystyle{ x }[/math] בתחום ההגדרה של [math]\displaystyle{ f }[/math] נקראת חשודה אם [math]\displaystyle{ f'(x)=0 }[/math] או שהנגזרת אינה מוגדרת ב- [math]\displaystyle{ x }[/math] .
סיווג נקודות חשודות
משפט: תהי [math]\displaystyle{ f }[/math] פונקציה הגזירה ברציפות [math]\displaystyle{ n+1 }[/math] פעמים בסביבת הנקודה [math]\displaystyle{ a }[/math] . עוד נניח כי
- [math]\displaystyle{ \begin{align}f'(a)=f''(a)=\cdots=f^{(n)}(a)=0\\f^{(n+1)}(a)\ne0\end{align} }[/math]
אזי:
- אם [math]\displaystyle{ n+1 }[/math] זוגי וגם [math]\displaystyle{ f^{(n+1)}(a)\gt 0 }[/math] אזי [math]\displaystyle{ a }[/math] נקודת מינימום מקומי.
- אם [math]\displaystyle{ n+1 }[/math] זוגי וגם [math]\displaystyle{ f^{(n+1)}(a)\lt 0 }[/math] אזי [math]\displaystyle{ a }[/math] נקודת מקסימום מקומי.
- אם [math]\displaystyle{ n+1 }[/math] אי-זוגי אזי [math]\displaystyle{ a }[/math] נקודת פיתול.
הוכחה:
לפי טיילור לכל [math]\displaystyle{ x }[/math] בסביבה קיימת נקודה [math]\displaystyle{ c }[/math] בין [math]\displaystyle{ x }[/math] לבין [math]\displaystyle{ a }[/math] כך ש:
- [math]\displaystyle{ f(x)=f(a)+f'(a)(x-a)+\cdots+\dfrac{f^{(n)}(a)}{n!}+\dfrac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} }[/math]
אבל לפי ההנחה כי [math]\displaystyle{ n }[/math] הנגזרות הראשונות מתאפסות ב- [math]\displaystyle{ a }[/math] , מתקיים
- [math]\displaystyle{ f(x)-f(a)=\dfrac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} }[/math]
לכן, אם [math]\displaystyle{ n+1 }[/math] זוגי וגם [math]\displaystyle{ f^{(n+1)}(a)\gt 0 }[/math] לפי רציפות הנגזרת השניה קיימת סביבת [math]\displaystyle{ a }[/math] בה [math]\displaystyle{ f^{(n+1)}\gt 0 }[/math] ולכן לכל [math]\displaystyle{ x }[/math] בסביבה מתקיים:
- [math]\displaystyle{ f(x)-f(a)\ge0 }[/math]
שכן [math]\displaystyle{ (x-a)^{(n+1)}\ge0 }[/math] תמיד עבור [math]\displaystyle{ n+1 }[/math] זוגי.
כלומר אם [math]\displaystyle{ f^{(n+1)}(a)\gt 0 }[/math] אזי [math]\displaystyle{ x }[/math] הנה נקודת מינימום.
באופן דומה, אם [math]\displaystyle{ f^{(n+1)}(a)\lt 0 }[/math] אזי [math]\displaystyle{ x }[/math] הנה נקודת מקסימום.
אם [math]\displaystyle{ n+1 }[/math] אי-זוגי, אזי הסימן של [math]\displaystyle{ (x-a)^{(n+1)} }[/math] חיובי בסביבה ימנית של [math]\displaystyle{ a }[/math] ושלילי משמאלה.
כיון שסימן [math]\displaystyle{ f^{(n+1)} }[/math] קבוע בסביבת [math]\displaystyle{ a }[/math] , סה"כ מצד אחד [math]\displaystyle{ f(x)\gt f(a) }[/math] ומהצד השני [math]\displaystyle{ f(x)\lt f(a) }[/math] .
אבל הנגזרת הראשונה מתאפסת ב- [math]\displaystyle{ a }[/math] ולכן המשיק הוא [math]\displaystyle{ y=f(a) }[/math] , ולכן הפונקציה קטנה ממנו בצד אחד וגדולה ממנו בצד השני ולכן [math]\displaystyle{ a }[/math] הנה נקודת פיתול.