88-311 אלגברה מופשטת 3/ סמסטר א תשעב/תרגילים: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
שורה 31: שורה 31:
יש להגיש את התרגיל '''בתחילת''' התרגול בתאריך 24.11.11.
יש להגיש את התרגיל '''בתחילת''' התרגול בתאריך 24.11.11.


פיתרון: [[מדיה:Galois2012Ex3Solution.pdf|פתרון תרגיל 3]]


== תרגיל 4 ==
== תרגיל 4 ==

גרסה מ־19:08, 13 בדצמבר 2011

ציונים

טבלת ציונים ניתן לראות כאן.

אם הגשתם באחור, יתכן והציון שלכם יתפרסם מאוחר יותר.

הציון באתר קובע. אם משום מה הציון שונה מהרשום לכם על התרגיל פנו למתרגל עם התרגיל.


תרגיל 1

נוסח התרגיל: תרגיל 1

יש להגיש את התרגיל בתחילת התרגול בתאריך 10.11.11.

אין צורך לפתור את שתי השאלות האחרונות (4 ו-5). הן כנראה תעבורנה לתרגיל הבא.

פיתרון: פיתרון תרגיל 1

תרגיל 2

נוסח התרגיל תרגיל 2

יש להגיש את התרגיל בתחילת התרגול בתאריך 17.11.11.

תיקון קל: בשאלה 3, הפולינום הוא [math]\displaystyle{ x^3+ax^2+bx+c }[/math] ולא [math]\displaystyle{ x^3+ax+bx+c }[/math].

פיתרון: פיתרון תרגיל 2

תרגיל 3

נוסח התרגיל: תרגיל 3

יש להגיש את התרגיל בתחילת התרגול בתאריך 24.11.11.

פיתרון: פתרון תרגיל 3

תרגיל 4

נוסח התרגיל: תרגיל 4

יש להגיש את התרגיל בתחילת התרגול בתאריך 1.12.11. איחורים לא יתקבלו.

הבהרה: ב"חימום" אין צורך לפתור את התרגילים המופיעים בסיכום "שדות - תכונות בסיסיות".


תזכורת: בשיעור הזכרנו את הדברים הבאים. אפשר (וכנראה כדאי) להשתמש בהם:

  • אם [math]\displaystyle{ F\subseteq K\subseteq L }[/math] שדות אז [math]\displaystyle{ [L:F] }[/math] מתחלק ב-[math]\displaystyle{ [K:F] }[/math]. (הסבר: זה נובע מ-[math]\displaystyle{ [L:K]\cdot[K:F]=[L:F] }[/math])
  • בהנחות הנ"ל, אם [math]\displaystyle{ a\in L }[/math] אלגברי מעל [math]\displaystyle{ F }[/math] אז [math]\displaystyle{ [K[a]:K]\leq [F[a]:F] }[/math].
  • אם [math]\displaystyle{ f(x)\in F[x] }[/math] פולינום ו-[math]\displaystyle{ a_1,\ldots,a_n }[/math] הם השורשים של [math]\displaystyle{ f(x) }[/math] בשדה גדול המכיל את [math]\displaystyle{ F }[/math] אז שדה הפיצול של [math]\displaystyle{ f(x) }[/math] (מעל [math]\displaystyle{ F }[/math]) הוא [math]\displaystyle{ F[a_1,\ldots,a_n] }[/math].
  • אם [math]\displaystyle{ p }[/math] ראשוני, אז הפולינום המינימלי של [math]\displaystyle{ \rho_p=\exp(2\pi i/p) }[/math] (שורש יחידה פרימיטיבי מסדר [math]\displaystyle{ p }[/math]) מעל [math]\displaystyle{ \mathbb{Q} }[/math] הוא [math]\displaystyle{ x^{p-1}+x^{p-2}+\ldots+x+1 }[/math].


תרגיל 5

נוסח התרגיל: תרגיל 5

יש להגיש את התרגיל בתחילת התרגול בתאריך 8.12.11. איחורים לא יתקבלו.


תרגיל 6

נוסח התרגיל: תרגיל 6

יש להגיש את התרגיל בתחילת התרגול בתאריך 15.12.11.