88-212 מבוא לחוגים ומודולים: הבדלים בין גרסאות בדף
אין תקציר עריכה |
אין תקציר עריכה |
||
שורה 3: | שורה 3: | ||
== נושאי הקורס == | == נושאי הקורס == | ||
# חוגים ואידיאלים - מבוא | # חוגים ואידיאלים - מבוא: מושגי היסוד של התחום. | ||
# אידיאלים ראשוניים ומקסימליים | # אידיאלים ראשוניים ומקסימליים: העמקה בהבנת אידיאלים ראשוניים, שלהם תפקיד מרכזי בתורת המבנה של חוגים. | ||
# תחומי שלמות: סוגים שונים של [[תחום שלמות|תחומי שלמות]], לרבות [[תחום פריקות יחידה|תחומי פריקות יחידה]] ו[[תחום ראשי|תחומים ראשיים]]. | |||
# פולינומים ושדות: שימושים במשפטים מהפרק השלישי כדי לברר אילו פולינומים הם אי-פריקים, ולבנות פתרונות למשוואות פולינומיאליות ו[[שדה מפצל|שדות מפצלים]]; פרק זה הוא הכנה לקורס "[[88-311 אלגברה מופשטת 3|תורת השדות]]". | |||
# מבוא לתורת המודולים: מיון [[מודול|מודולים]] [[מודול נוצר סופית|נוצרים סופית]] מעל תחומים ראשיים, ושימושים למיון [[חבורה אבלית|חבורות אבליות]] [[חבורה נוצרת סופית|נוצרות סופית]], ולהכללת המשפטים על [[צורת ז'ורדן]]. | |||
== מועדי הלימוד == | == מועדי הלימוד == |
גרסה מ־23:18, 29 בפברואר 2012
הקורס אלגברה מופשטת 2 הוא קורס שני באלגברה מודרנית, העוסק בתורת החוגים. הקורס מיועד לבוגרי תורת החבורות. רקע באלגברה לינארית (1 ו2) רצוי אבל אינו הכרחי.
נושאי הקורס
- חוגים ואידיאלים - מבוא: מושגי היסוד של התחום.
- אידיאלים ראשוניים ומקסימליים: העמקה בהבנת אידיאלים ראשוניים, שלהם תפקיד מרכזי בתורת המבנה של חוגים.
- תחומי שלמות: סוגים שונים של תחומי שלמות, לרבות תחומי פריקות יחידה ותחומים ראשיים.
- פולינומים ושדות: שימושים במשפטים מהפרק השלישי כדי לברר אילו פולינומים הם אי-פריקים, ולבנות פתרונות למשוואות פולינומיאליות ושדות מפצלים; פרק זה הוא הכנה לקורס "תורת השדות".
- מבוא לתורת המודולים: מיון מודולים נוצרים סופית מעל תחומים ראשיים, ושימושים למיון חבורות אבליות נוצרות סופית, ולהכללת המשפטים על צורת ז'ורדן.