אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות: הבדלים בין גרסאות בדף
(←תשובה) |
|||
שורה 29: | שורה 29: | ||
::::::(סליחה על החפירה), לא ממש הצלחתי להבין.. יש לנו את הביטוי f'(x0)*(x-x0), אם f'(x0) הוא קבוע אז למה בגזירה הביטוי הופך לf(2)(x0)? ולמה x-x0 נשאר כמו שהוא? | ::::::(סליחה על החפירה), לא ממש הצלחתי להבין.. יש לנו את הביטוי f'(x0)*(x-x0), אם f'(x0) הוא קבוע אז למה בגזירה הביטוי הופך לf(2)(x0)? ולמה x-x0 נשאר כמו שהוא? | ||
זה לא מה שקרה. את <math>f'(x_0)(x-x_0)</math> גזרנו לפי x (זה לא ביטוי קבוע) וקיבלנו <math>f'(x_0)</math> שזה המקדם של x. | |||
את <math>f^{(2)}(x_0)/2 (x-x_0)^2</math> גזרנו לקבל <math>f^{(2)}(x_0)(x-x_0)</math> | |||
תחשוב, איך היית גוזר את הפונקציה <math>f(x)=a(x+b)^2</math>? | |||
==שאלה== | |||
יש לי שאלה נוספת. בהגדרה של קמירות כלפי מטה ומעלה, האם מדובר על סביבה מנוקבת של x0? כי בהגדרה אצלנו יש אי שיוויון ממש של h(x)>f(x) או h(x)<f(X), כלומר לא כוללים את x0 בסביבה, נכון? (אחרת זה לא היה גדול ממש או קטן ממש, אלא גדול שווה/קטן שווה.) | יש לי שאלה נוספת. בהגדרה של קמירות כלפי מטה ומעלה, האם מדובר על סביבה מנוקבת של x0? כי בהגדרה אצלנו יש אי שיוויון ממש של h(x)>f(x) או h(x)<f(X), כלומר לא כוללים את x0 בסביבה, נכון? (אחרת זה לא היה גדול ממש או קטן ממש, אלא גדול שווה/קטן שווה.) | ||
גרסה מ־16:53, 22 במרץ 2010
[math]\displaystyle{ \lim_{n\rightarrow\infty}f_n }[/math]
הוראות
כאן המקום לשאול שאלות. כל שעליכם לעשות הוא ללחוץ על [עריכה] (משמאל לכותרת "שאלות"), להוסיף בתחילת הדף את השורה הבאה:
== כותרת לשאלה ==
ארכיון
שאלות
שאלות
היי, (הוספתי שאלה למעלה באחד הדיונים מדוע המונה - Rn(x)- שואף ל0 לאחר גזירות מסוימות..)
- ונתנה לכך תשובה, תסתכל בארכיון.
- אבל ניתנה תשובה רק לשלב הראשון. הסתבכתי קצת עם הגזירה הראשונה. תוכל בבקשה להראות רק את השלב של הגזירה הראשונה ולהסביר למה עדיין יוצא שהמונה שואף ל0?
תשובה
השארית הינה:
[math]\displaystyle{ f(x)-f(x_0)-f'(x_0)(x-x_0)-f^{(2)}(x_0)/2 (x-x_0)^2 - ... }[/math] ולכן הנגזרת של זה הינה [math]\displaystyle{ f'(x)-f'(x_0) - f^{(2)}(x_0)(x-x_0)-... }[/math]
והטענה דומה
- למה בגזירה, כתבת את הנגזרת השניה של x-x0 ולא את הנגזרת השניה של X?
- שגיאת דפוס.... תיקנתי.
- רגע, אבל זה לא ביטוי מורכב? כלומר, f'(x) כפול ביטוי שהוא x-x0? לא אמור לגזור את זה לפי (u*g)' = u'+g' ?
- שגיאת דפוס.... תיקנתי.
- למה בגזירה, כתבת את הנגזרת השניה של x-x0 ולא את הנגזרת השניה של X?
- לא, [math]\displaystyle{ f^{(2)}(x_0) }[/math] הוא קבוע כי [math]\displaystyle{ x_0 }[/math] קבוע!. x הינו משתנה, ואנחנו גוזרים לפיו.
- (סליחה על החפירה), לא ממש הצלחתי להבין.. יש לנו את הביטוי f'(x0)*(x-x0), אם f'(x0) הוא קבוע אז למה בגזירה הביטוי הופך לf(2)(x0)? ולמה x-x0 נשאר כמו שהוא?
- לא, [math]\displaystyle{ f^{(2)}(x_0) }[/math] הוא קבוע כי [math]\displaystyle{ x_0 }[/math] קבוע!. x הינו משתנה, ואנחנו גוזרים לפיו.
זה לא מה שקרה. את [math]\displaystyle{ f'(x_0)(x-x_0) }[/math] גזרנו לפי x (זה לא ביטוי קבוע) וקיבלנו [math]\displaystyle{ f'(x_0) }[/math] שזה המקדם של x.
את [math]\displaystyle{ f^{(2)}(x_0)/2 (x-x_0)^2 }[/math] גזרנו לקבל [math]\displaystyle{ f^{(2)}(x_0)(x-x_0) }[/math]
תחשוב, איך היית גוזר את הפונקציה [math]\displaystyle{ f(x)=a(x+b)^2 }[/math]?
שאלה
יש לי שאלה נוספת. בהגדרה של קמירות כלפי מטה ומעלה, האם מדובר על סביבה מנוקבת של x0? כי בהגדרה אצלנו יש אי שיוויון ממש של h(x)>f(x) או h(x)<f(X), כלומר לא כוללים את x0 בסביבה, נכון? (אחרת זה לא היה גדול ממש או קטן ממש, אלא גדול שווה/קטן שווה.)
- אני חושב שאתה צודק. המטרה של האי שיוויון היא שנקודה בפונקציה קבועה לא תהיה נקודת פיתול (אבל היא כן נקודת קיצון)
תרגיל 2 - שאלה 3a
האם מותר לי להגדיר פונקצייה חדשה שהיא ההפרש בין שתי הפונקציות, ולפתח אותה לפי טיילור סביב הנק' x0, ואז להראות שאני יכול לבחור כל x שגדול מ-[math]\displaystyle{ x_0 }[/math] כדי לקבל שערך הפונקצייה החדשה חיובי תמיד (ומכאן להסיק שאחת מהפונקציות גדולה מהשנייה)? כלומר, שלכל [math]\displaystyle{ x\gt x_0 }[/math] שאני אבחר קיים c מתאים שעבורו זה מתקיים, לכן זה מתקיים לכל x כזה. האם מותר לי לומר את זה?
- לא מבין את מטרת השאלה.
- האם הרעיון לפתרון התרגיל, ואופן הביצוע שלו נכון (כפי שתיארתי כאן)? כי שמעתי מהרבה שהם עשו את התרגיל בדרך שונה לגמרי.
- כל דרך שאכן מוכיחה היא טובה, על מנת לדעת אם התשובה היא טובה יש בדיקת תרגילים ופרסום פתרונות. בגדול מה שרשמת זה אכן נכון, כמובן נדרש פירוט מדוייק...
- תודה רבה :) !!
שאלה - o, גבולות
1. הביטוי [math]\displaystyle{ o(f(x)) }[/math] כש-x שואף לערך מסוים בעצם מסמל ביטוי שזניח ביחס ל-[math]\displaystyle{ f(x) }[/math], במילים אחרות, נכון?
2. נניח שיש לי ביטוי שעבור x ששואף לערך מסוים הוא [math]\displaystyle{ o(\frac{1}{x^3}) }[/math] , ואני כופל אותו ב-[math]\displaystyle{ x }[/math], האם הוא הופך להיות [math]\displaystyle{ o(\frac{1}{x^2}) }[/math] ?