מכינה למתמטיקה קיץ תשעב/תרגילים/1/פתרון 1: הבדלים בין גרסאות בדף
Tomer Yogev (שיחה | תרומות) אין תקציר עריכה |
Tomer Yogev (שיחה | תרומות) אין תקציר עריכה |
||
שורה 96: | שורה 96: | ||
<math>x \leq -1</math> : נקבל אי שוויון <math>-(x-1) > x^2 - 1</math> . נפשט ונקבל <math>x^2 +x -2 < 0</math> והפתרון של זה הוא <math>-2 < x < 1</math> . סה"כ: <math>-2 < x \leq -1</math> | <math>x \leq -1</math> : נקבל אי שוויון <math>-(x-1) > x^2 - 1</math> . נפשט ונקבל <math>x^2 +x -2 < 0</math> והפתרון של זה הוא <math>-2 < x < 1</math> . סה"כ: <math>-2 < x \leq -1</math> | ||
<math>-1 < x \leq 1</math> : נקבל אי שוויון <math>-(x-1) > -(x^2-1)</math> ואחרי פישוט: <math>x^2 -x > 0</math> . הפתרון הוא <math>x<0</math> או <math>x > 1</math> לכן סה"כ: <math> | <math>-1 < x \leq 1</math> : נקבל אי שוויון <math>-(x-1) > -(x^2-1)</math> ואחרי פישוט: <math>x^2 -x > 0</math> . הפתרון הוא <math>x<0</math> או <math>x > 1</math> לכן סה"כ: <math>-1 < x < 0</math> . | ||
<math>x > 1</math> : נקבל <math>x-1 > x^2 - 1</math> . נפשט: <math>x^2 -x < 0</math> והפתרון הוא <math>0 < x < 1</math> . לכן במקרה זה אין פתרון. | <math>x > 1</math> : נקבל <math>x-1 > x^2 - 1</math> . נפשט: <math>x^2 -x < 0</math> והפתרון הוא <math>0 < x < 1</math> . לכן במקרה זה אין פתרון. | ||
פתרון: <math>-2 < x | פתרון: <math>-2 < x 0</math> | ||
*<math>|x^2-4x-3| + |x-1| + |x-2| > 2x</math> | *<math>|x^2-4x-3| + |x-1| + |x-2| > 2x</math> |
גרסה מ־10:14, 8 באוגוסט 2012
1
- [math]\displaystyle{ x^2+2x+1\leq 0 }[/math]
נבדוק מתי הביטוי באגף שמאל מתאפס: [math]\displaystyle{ x^2+2x+1 = 0 }[/math].
לפי נוסחה נקבל פתרון יחיד [math]\displaystyle{ x=-1 }[/math].
המקדם של [math]\displaystyle{ x^2 }[/math] חיובי (1) לכן הביטוי מתאפס ב[math]\displaystyle{ -1 }[/math] וחיובי מימינו ומשמאלו (ולכן אינו שלילי לאף x).
פתרון: [math]\displaystyle{ x=-1 }[/math]
- [math]\displaystyle{ (1-x)(x+6)\gt 0 }[/math]
נבדוק מתי מתאפס. הביטוי הוא מכפלה של שני ביטויים ולכן הוא מתאפס כאשר כל אחד מהם מתאפס. לכן אגף שמאל מתאפס ב[math]\displaystyle{ x=1 }[/math] וב[math]\displaystyle{ x=-6 }[/math].
אם נפתח סוגריים נקבל [math]\displaystyle{ -x^2-5x+6 }[/math] והמקדם של [math]\displaystyle{ x^2 }[/math] שלילי לכן הביטוי מקבל ערכים שליליים כש[math]\displaystyle{ x\lt -6 }[/math] ו[math]\displaystyle{ x\gt 1 }[/math] וערכים חיוביים כש[math]\displaystyle{ -6\lt x\lt 1 }[/math]
פתרון: [math]\displaystyle{ -6\lt x\lt 1 }[/math]
- [math]\displaystyle{ -3x^2 +6x - 1 \geq 0 }[/math]
מתי הביטוי מתאפס: [math]\displaystyle{ -3x^2+6x-1=0 }[/math]? לפי נוסחה נקבל [math]\displaystyle{ x={-6 \pm \sqrt{36-12} \over -6}=1 \pm {\sqrt{6} \over 3} }[/math]
המקדם של [math]\displaystyle{ x^2 }[/math] שלילי לכן הערכים החיוביים מתקבלים בין הפתרונות שמצאנו.
פתרון: [math]\displaystyle{ 1 - {\sqrt{6} \over 3} \leq x \leq 1 + {\sqrt{6} \over 3} }[/math]
- [math]\displaystyle{ (x^2+1)(x^2-1)x^2 \leq 0 }[/math]
נפרק לשלושה ביטויים: [math]\displaystyle{ x^2+1 }[/math] , [math]\displaystyle{ x^2-1 }[/math] , [math]\displaystyle{ x^2 }[/math] , ונבדוק מתי כל אחד מהם חיובי ושלילי.
[math]\displaystyle{ x^2+1 }[/math] : ריבוע של מספר הוא תמיד אי-שלילי, ולכן בתוספת 1 הוא תמיד חיובי (למשוואה [math]\displaystyle{ x^2=-1 }[/math] אין פתרון ממשי)
[math]\displaystyle{ x^2-1 }[/math] : מתאפס ב[math]\displaystyle{ x= \pm 1 }[/math]. הביטוי שלילי ביניהם וחיובי ב[math]\displaystyle{ x\lt -1 }[/math] או [math]\displaystyle{ x\gt 1 }[/math]
[math]\displaystyle{ x^2 }[/math] : מתאפס ב0 וחיובי אחרת.
קיבלנו מספר תחומים. נבדוק את סימן הביטוי בכל תחום לפי מכפלת הסימנים של הביטויים הקטנים:
[math]\displaystyle{ x\lt -1 }[/math] : הביטוי הראשון חיובי, השני חיובי והשלישי חיובי. לכן המכפלה גם חיובית
[math]\displaystyle{ -1\lt x\lt 0 }[/math] : הביטוי הראשון חיובי, השני שלילי והשלישי חיובי. לכן המכפלה שלילית
[math]\displaystyle{ 0\lt x\lt 1 }[/math] : הביטוי הראשון חיובי, השני שלילי והשלישי חיובי. לכן המכפלה שלילית
[math]\displaystyle{ 1\lt x }[/math] : הביטוי הראשון חיובי, השני חיובי והשלישי חיובי. לכן המכפלה חיובית
בנקודות [math]\displaystyle{ x=0 , \pm 1 }[/math] הביטוי מתאפס לכן גם נקודות אלה הן פתרונות לאי השוויון.
פתרון: [math]\displaystyle{ -1 \leq x \leq 1 }[/math]
- [math]\displaystyle{ (x-1)(x-2)(x-3)(x-4)\cdots (x-n)\gt 0 }[/math]
כאשר [math]\displaystyle{ n\in\mathbb{N} }[/math]. שימו לב, רצוי לחלק למקרים אפשריים של n.
- [math]\displaystyle{ |x|\leq 7 }[/math]
נחלק למקרים: אם [math]\displaystyle{ x \ geq 0 }[/math] נקבל את אי השוויון [math]\displaystyle{ |x|\leq 7 }[/math] ולכן סה"כ הפתרונות של מקרה זה הם [math]\displaystyle{ 0 \leq x \leq 7 }[/math]
אם [math]\displaystyle{ x\lt 0 }[/math] נקבל [math]\displaystyle{ -x \le 7 }[/math] , לכן [math]\displaystyle{ x \geq -7 }[/math] וסה"כ הפתרונות הם [math]\displaystyle{ -7 \leq x \lt 0 }[/math]
נאחד את הפתרונות של שני המקרים ונקבל את הפתרון
פתרון: [math]\displaystyle{ -7 \leq x \leq 7 }[/math]
- [math]\displaystyle{ |2x-1|\lt 7 }[/math]
נחלק למקרים. הביטוי הערך המוחלט מתאפס ב[math]\displaystyle{ 1 /over 2 }[/math] לכן נתבונן במקרים:
[math]\displaystyle{ x \geq {1 \over 2} }[/math] : אי השוויון הוא [math]\displaystyle{ 2x-1\lt 7 }[/math] לכן [math]\displaystyle{ 2x\lt 8 }[/math] ו[math]\displaystyle{ x\lt 4 }[/math]. התשובה היא [math]\displaystyle{ {1 \over 2} \leq x \lt 4 }[/math]
[math]\displaystyle{ x \lt {1 \over 2} }[/math] : אי השוויון הוא [math]\displaystyle{ -2x+1\lt 7 }[/math] לכן [math]\displaystyle{ -2x\lt 6 }[/math] לכן [math]\displaystyle{ x\gt -3 }[/math]. התשובה היא [math]\displaystyle{ -3 \lt x \lt {1 \over 2} }[/math]. נאחד את הפתרונות ונקבל:
פתרון: [math]\displaystyle{ -3 \lt x \lt 4 }[/math]
- [math]\displaystyle{ (x-1)|x-1| \gt 1 }[/math]
נחלק למקרים:
[math]\displaystyle{ x\gt 1 }[/math] : אי השוויון הוא [math]\displaystyle{ (x-1)(x-1) \gt 1 }[/math]. נפשט ונקבל [math]\displaystyle{ x^2-2x \gt 0 }[/math]. ביטוי זה חיובי עבור [math]\displaystyle{ x\lt 0 }[/math] או [math]\displaystyle{ x \gt 2 }[/math] (בדקו!). לכן הפתרון הוא [math]\displaystyle{ x\gt 2 }[/math]
[math]\displaystyle{ x\lt 1 }[/math] : אי השוויון הוא [math]\displaystyle{ -(x-1)(x-1)\gt 1 }[/math]. נפשט ונקבל [math]\displaystyle{ -x^2 +2x -2 \gt 0 }[/math] ביטוי זה אף פעם לא חיובי (בדקו!), לכן במקרה זה אין פתרון.
פתרון: [math]\displaystyle{ x\gt 2 }[/math]
- [math]\displaystyle{ \frac{|x|}{x} \gt 1 }[/math]
נשים לב שלביטוי אין ערך ב[math]\displaystyle{ x=0 }[/math]. אם [math]\displaystyle{ x\gt 0 }[/math] נקבל [math]\displaystyle{ {x\over x} \gt 1 }[/math] וזה לא יתכן. אם [math]\displaystyle{ x\lt 0 }[/math] נקבל [math]\displaystyle{ {-x \over x} \gt 1 }[/math] וגם זה לא יתכן.
פתרון: אף x לא מקיים את אי השוויון
- [math]\displaystyle{ |x-1|\gt |x^2-1| }[/math]
הביטוי בערך המוחלט הימני חיובי עבור [math]\displaystyle{ x\lt -1 }[/math] או [math]\displaystyle{ x\gt 1 }[/math].
[math]\displaystyle{ x \leq -1 }[/math] : נקבל אי שוויון [math]\displaystyle{ -(x-1) \gt x^2 - 1 }[/math] . נפשט ונקבל [math]\displaystyle{ x^2 +x -2 \lt 0 }[/math] והפתרון של זה הוא [math]\displaystyle{ -2 \lt x \lt 1 }[/math] . סה"כ: [math]\displaystyle{ -2 \lt x \leq -1 }[/math]
[math]\displaystyle{ -1 \lt x \leq 1 }[/math] : נקבל אי שוויון [math]\displaystyle{ -(x-1) \gt -(x^2-1) }[/math] ואחרי פישוט: [math]\displaystyle{ x^2 -x \gt 0 }[/math] . הפתרון הוא [math]\displaystyle{ x\lt 0 }[/math] או [math]\displaystyle{ x \gt 1 }[/math] לכן סה"כ: [math]\displaystyle{ -1 \lt x \lt 0 }[/math] .
[math]\displaystyle{ x \gt 1 }[/math] : נקבל [math]\displaystyle{ x-1 \gt x^2 - 1 }[/math] . נפשט: [math]\displaystyle{ x^2 -x \lt 0 }[/math] והפתרון הוא [math]\displaystyle{ 0 \lt x \lt 1 }[/math] . לכן במקרה זה אין פתרון.
פתרון: [math]\displaystyle{ -2 \lt x 0 }[/math]
- [math]\displaystyle{ |x^2-4x-3| + |x-1| + |x-2| \gt 2x }[/math]