88-202 תשעט סמסטר א: הבדלים בין גרסאות בדף
שורה 92: | שורה 92: | ||
[[מדיה:settheoryex112019.pdf|תרגיל 11]] | [[מדיה:settheoryex112019.pdf|תרגיל 11]] | ||
הערה: בשאלה 3 א' יש לדרוש: <math>\kappa<0</math>. | |||
==העשרה== | ==העשרה== |
גרסה מ־10:15, 8 בינואר 2019
מרצה: פרופ' בועז צבאן.
מתרגלת: תמר בר-און.
דרישות הקורס: תרגיל (20% מהציון הסופי), מטלות קריאה עצמית, מבחן (80% מהציון הסופי). חובה להגיש לפחות 70% מתרגילי הבית (מעוגל כלפי מעלה) כדי לקבל ציון בקורס.
הודעות
סקר שביעות הרצון מההוראה בקורס: כדי שיהיה משוב על הקורס, חשוב שכל תלמיד שנכח בהרצאות, אפילו בחלקן, ימלא את סקר ההוראה של הקורס. השתתפותכם בסקר רצויה ומוערכת.
מטלת קריאה שלישית בקורס: הוכחת המשפט שהמרחב הוא איחוד מעגלים זרים.
מטלת קריאה שניה בקורס: הוכחת הטענה האחרונה מההרצאה בנושא האלפים, ועוד תכונה של אלפים.
מטלת קריאה ראשונה בקורס: הוכחת משפט הרקורסיה (+דוגמא מפורטת כבונוס).
בוחן
בוחן בקורס יתקיים ביום ראשון, 16.12, בשעה 14:00-15:30 (בזמן התרגול).
חומר לבוחן: כל מה שנלמד עד תרגול 7, כולל. בפירוט:
קבוצות סדורות. סדר צפוף. סדר טוב.
תת קבוצות קופינליות.
פונקציות שומרות סדר, איזומורפיזם סדר.
סודרים (הגדרה ותכונות).
סודרים עוקבים וגבוליים.
ארתמטיקה של סודרים: חיבור, חיסור, כפל, חילוק עם שארית, חזקות, הצגה לפי בסיס.
פונקציות מונוטוניות ורציפות.
טופולוגיית הסדר.
בבוחן יכולות להופיע שאלות מהתרגול/ מש"ב, כמו גם שאלות חדשות.
תקציר הקורס
תקציר הקורס המתעדכן. מתעדכן מדי הרצאה, ולכן לא מומלץ להורידו אלא לקרוא תמיד מהקישור.
תרגילים
הערה: בשאלה 3 א' יש לדרוש: [math]\displaystyle{ \kappa\lt 0 }[/math].
העשרה
איך לספור מעבר לאינסוף: סרטון המסביר באופן מאד ויזואלי ויפה, את המושגים המרכזיים בחלק הראשון של הקורס.
משפט גודשטיין: הערך בויקיפדיה. מכיל דוגמאות מפורטות של סדרות, והרחבות שונות.
הפרדוקס של בנך-טרסקי: איך אפשר - תיאורטית - להפוך כדור זהב אחד לשניים, בעזרת אקסיומת הבחירה.