88-212 מבוא לחוגים ומודולים: הבדלים בין גרסאות בדף
שורה 5: | שורה 5: | ||
# חוגים ואידיאלים - מבוא: מושגי היסוד של התחום. | # חוגים ואידיאלים - מבוא: מושגי היסוד של התחום. | ||
# אידיאלים ראשוניים ומקסימליים: העמקה בהבנת אידיאלים ראשוניים, שלהם תפקיד מרכזי בתורת המבנה של חוגים. | # אידיאלים ראשוניים ומקסימליים: העמקה בהבנת אידיאלים ראשוניים, שלהם תפקיד מרכזי בתורת המבנה של חוגים. | ||
# תחומי שלמות: סוגים שונים של [[תחום שלמות|תחומי שלמות]], לרבות [[תחום פריקות יחידה|תחומי פריקות יחידה]] ו[[תחום ראשי|תחומים ראשיים]]. | # תחומי שלמות: סוגים שונים של [[תחום שלמות|תחומי שלמות]], לרבות [[תחום פריקות יחידה|תחומי פריקות יחידה]] ו[[תחום ראשי|תחומים ראשיים]]. [[חוג ריבועי|חוגים ריבועיים]] וחוגי המנה שלהם. | ||
# פולינומים ושדות: שימושים במשפטים מהפרק השלישי כדי לברר אילו פולינומים הם אי-פריקים, ולבנות פתרונות למשוואות פולינומיאליות ו[[שדה מפצל|שדות מפצלים]]; פרק זה הוא הכנה לקורס "[[88-311 אלגברה מופשטת 3|תורת השדות]]". | # פולינומים ושדות: שימושים במשפטים מהפרק השלישי כדי לברר אילו פולינומים הם אי-פריקים, ולבנות פתרונות למשוואות פולינומיאליות ו[[שדה מפצל|שדות מפצלים]]; פרק זה הוא הכנה לקורס "[[88-311 אלגברה מופשטת 3|תורת השדות]]". | ||
# מבוא לתורת המודולים: מיון [[מודול|מודולים]] [[מודול נוצר סופית|נוצרים סופית]] מעל תחומים ראשיים, ושימושים למיון [[חבורה אבלית|חבורות אבליות]] [[חבורה נוצרת סופית|נוצרות סופית]], ולהכללת המשפטים על [[צורת ז'ורדן]]. | # מבוא לתורת המודולים: מיון [[מודול|מודולים]] [[מודול נוצר סופית|נוצרים סופית]] מעל תחומים ראשיים, ושימושים למיון [[חבורה אבלית|חבורות אבליות]] [[חבורה נוצרת סופית|נוצרות סופית]], ולהכללת המשפטים על [[צורת ז'ורדן]]. |
גרסה מ־07:48, 4 ביולי 2019
הקורס אלגברה מופשטת 2 הוא קורס שני באלגברה מודרנית, העוסק בתורת החוגים. הקורס מיועד לבוגרי תורת החבורות. רקע באלגברה לינארית (1 ו2) רצוי אבל אינו הכרחי.
נושאי הקורס
- חוגים ואידיאלים - מבוא: מושגי היסוד של התחום.
- אידיאלים ראשוניים ומקסימליים: העמקה בהבנת אידיאלים ראשוניים, שלהם תפקיד מרכזי בתורת המבנה של חוגים.
- תחומי שלמות: סוגים שונים של תחומי שלמות, לרבות תחומי פריקות יחידה ותחומים ראשיים. חוגים ריבועיים וחוגי המנה שלהם.
- פולינומים ושדות: שימושים במשפטים מהפרק השלישי כדי לברר אילו פולינומים הם אי-פריקים, ולבנות פתרונות למשוואות פולינומיאליות ושדות מפצלים; פרק זה הוא הכנה לקורס "תורת השדות".
- מבוא לתורת המודולים: מיון מודולים נוצרים סופית מעל תחומים ראשיים, ושימושים למיון חבורות אבליות נוצרות סופית, ולהכללת המשפטים על צורת ז'ורדן.
מועדי הלימוד
- סמסטר ב' תשע"ט
- סמסטר ב' תשע"ח
- סמסטר ב' תשע"ז
- סמסטר ב' תשע"ו
- סמסטר ב' תשע"ה
- סמסטר ב' תשע"ג
- סמסטר ב' תשע"ב
מבחנים משנים קודמות
באתר המבחנים של המחלקה יש כמה מבחנים, אבל בלי פתרונות. שימו לב שחומר הלימוד משתנה מדי פעם. מבחנים נוספים אפשר למצוא בדף הקורס באתר של פרופ' וישנה.