אנליזת פורייה - ארז שיינר: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 49: שורה 49:


*נבצע כמה חישובים כהקדמה:
*נבצע כמה חישובים כהקדמה:
:<math>\sin(a)\sin(b)=\frac{1}{2}\left[\cos(a-b)-\cos(a+b)\right]</math>
*ראשית נזכור את הנוסחאות הטריגונומטריות:
:<math>\frac{1}{\pi}\int_{-\pi}^{\pi}sin(nx)sin(nx)dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}(1-\cos(2nx))dx =  \frac{1}{2\pi}\left[x-\frac{1}{2n}\sin(2nx)\right]_{-\pi}^{\pi}=1 </math>
**<math>\sin(a)\sin(b)=\frac{1}{2}\left[\cos(a-b)-\cos(a+b)\right]</math>
**<math>\cos(a)\cos(b)=\frac{1}{2}\left[\cos(a+b)+\cos(a-b)\right]</math>
*כעת, לכל <math>0\neq n\in\mathbb{N}</math> נקבל:
**<math>\frac{1}{\pi}\int_{-\pi}^{\pi}\sin(nx)\sin(nx)dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}(1-\cos(2nx))dx =  \frac{1}{2\pi}\left[x-\frac{1}{2n}\sin(2nx)\right]_{-\pi}^{\pi}=1 </math>
*עבור <math>n\neq k \in \mathbb{N}</math> נקבל:
**<math>\int_{-\pi}^{\pi}\sin(nx)\sin(kx)dx = \frac{1}{2}\int_{-\pi}^{\pi}(\cos((n-k)x)-\cos((n+k)x))dx = \frac{1}{2}\left[\frac{\sin((n-k)x)}{n-k}-\frac{\sin((n+k)x)}{n+k}\right]_{-\pi}^{\pi}=0</math>
**שימו לב כי השתמשנו כאן בעובדה ש<math>n-k,n+k\neq 0</math>.
*באופן דומה, לכל <math>0\neq n\in\mathbb{N}</math> נקבל:
**<math>\frac{1}{\pi}\int_{-\pi}^{\pi}\cos(nx)\cos(nx)dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}(\cos(2nx)+1)dx =  \frac{1}{2\pi}\left[\frac{1}{2n}\sin(2nx)+x\right]_{-\pi}^{\pi}=1 </math>
*עבור <math>n\neq k \in \mathbb{N}</math> נקבל:
**<math>\int_{-\pi}^{\pi}\cos(nx)\cos(kx)dx = \frac{1}{2}\int_{-\pi}^{\pi}(\cos((n+k)x)+\cos((n-k)x))dx = \frac{1}{2}\left[\frac{\sin((n-k)x)}{n+k}+\frac{\sin((n-k)x)}{n+k}\right]_{-\pi}^{\pi}=0</math>
**שימו לב כי השתמשנו כאן בעובדה ש<math>n-k,n+k\neq 0</math>.
*עבור <math>n,k\in \mathbb{N}</math> נקבל:
**<math>\int_{-\pi}^{\pi}\cos(nx)\sin(kx)dx=0</math> כיוון שמדובר ב'''אינטגרל בקטע סימטרי על פונקציה אי זוגית'''.
*ולבסוף, עבור <math>n=0</math> נקבל
**<math>\frac{1}{\pi}\int_{-\pi}^{\pi}\cos(0)\cos(0)dx=\frac{1}{\pi}\int_{-\pi}^{\pi}1dx=2</math>
*שימו לב שכאשר מציבים 0 בsin מקבלים אפס, ולכן אין צורך בבדיקה הזו.
 
 
*הערה חשובה:
**למעשה כלל החישובים שעשינו לעיל מוכיחים שהקבוצה <math>\{\frac{1}{2},sin(x),cos(x),sin(2x),cos(2x),...\}</math> מהווה בסיס אורתונורמלי לפי המכפלה הפנימית <math>\langle f,g\rangle=\frac{1}{\pi}\int_{-\pi}^{\pi}(f\cdot g) dx</math>

גרסה מ־08:54, 19 בפברואר 2019

מבחנים לדוגמא

תקציר ההרצאות

הקדמה

גלים

  • מבלי להגדיר גל במפורש, גל הוא תופעה מחזורית.
  • לגל שהוא פונקציה במשתנה אחד של ציר הזמן יש שלוש תכונות:
    • תדר או אורך גל (אחד חלקי המחזור או המחזור)
    • אמפליטודה (מרחק בין המקסימום למינימום)
    • פאזה (מהי נק' ההתחלה של המחזור).
  • אנחנו נתרכז כמעט באופן בלעדי בפונקציות הטריגונומטריות סינוס וקוסינוס, ונקרא להם גלים טריגונומטריים.


  • מדוע דווקא סינוס וקוסינוס?
  • למדנו במד"ר על המשוואה [math]\displaystyle{ y''=-k^2y }[/math] שהפתרון הכללי שלה הוא [math]\displaystyle{ y=a\sin(kt)+b\cos(kt) }[/math].
  • הקבוע [math]\displaystyle{ k }[/math] קובע את התדר של כל גל.
  • הקבועים [math]\displaystyle{ a,b }[/math] קובעים את האמפליטודה של כל גל.
  • מה לגבי הפאזה?
    • בפונקציה [math]\displaystyle{ a\sin(kt+t_0) }[/math], הקבוע [math]\displaystyle{ t_0 }[/math] קובע את הפאזה.
    • ניתן להציג כל גל כזה באמצעות סינוס וקוסינוס ללא פאזה:
      • [math]\displaystyle{ a\sin(kt+t_0)=(a\sin(t_0))cos(kt)+(a\cos(t_0))sin(kt) }[/math]


  • האם גם ההפך נכון? כלומר האם כל צירוף לינארי [math]\displaystyle{ a\sin(kt)+b\cos(kt) }[/math] ניתן להציג כגל יחיד?
  • תשובה: כן.
  • הוכחה:
    • נסמן [math]\displaystyle{ z=a+bi=rcis(\theta) }[/math]
    • כלומר [math]\displaystyle{ a\sin(kt)+b\cos(kt)=r\sin(\theta)sin(kt)+r\cos(\theta)cos(kt)=rcos(kt-\theta) }[/math]
  • שימו לב:
    • סכמנו שני גלים מאותו תדר עם פאזה אפס, וקיבלנו גל חדש.
    • הגל החדש הוא מאותו תדר כמו שני הגלים.
    • לגל החדש יש פאזה שאינה אפס.
    • האפליטודה של הגל החדש היא [math]\displaystyle{ r=\sqrt{a^2+b^2} }[/math].


  • האם כל פונקציה היא סכום של גלים?
  • בהנתן פונקציה שהיא סכום של גלים, כיצד נמצא מיהם הגלים המרכיבים אותה?
  • האם יש דרך יחידה להרכיב פונקציה מגלים? (למעשה כבר ראינו שלא באופן כללי - הרי הצלחנו להציג גל אחד כסכום של שני גלים אחרים).
  • למה בכלל מעניין אותנו לפרק פונקציה לגלים?
  • במהלך ההרצאות נענה (לפחות חלקית) על השאלות הללו.

טורי פורייה

  • טור פורייה הוא טור מהצורה [math]\displaystyle{ f(x)=\frac{a_0}{2}+\sum_{n=1}^\infty \left[a_n\cos(nx)+b_n\sin(nx)\right] }[/math]


  • אם פונקציה שווה לטור פורייה שלה, מהם המקדמים [math]\displaystyle{ a_n,b_n }[/math]?


  • נבצע כמה חישובים כהקדמה:
  • ראשית נזכור את הנוסחאות הטריגונומטריות:
    • [math]\displaystyle{ \sin(a)\sin(b)=\frac{1}{2}\left[\cos(a-b)-\cos(a+b)\right] }[/math]
    • [math]\displaystyle{ \cos(a)\cos(b)=\frac{1}{2}\left[\cos(a+b)+\cos(a-b)\right] }[/math]
  • כעת, לכל [math]\displaystyle{ 0\neq n\in\mathbb{N} }[/math] נקבל:
    • [math]\displaystyle{ \frac{1}{\pi}\int_{-\pi}^{\pi}\sin(nx)\sin(nx)dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}(1-\cos(2nx))dx = \frac{1}{2\pi}\left[x-\frac{1}{2n}\sin(2nx)\right]_{-\pi}^{\pi}=1 }[/math]
  • עבור [math]\displaystyle{ n\neq k \in \mathbb{N} }[/math] נקבל:
    • [math]\displaystyle{ \int_{-\pi}^{\pi}\sin(nx)\sin(kx)dx = \frac{1}{2}\int_{-\pi}^{\pi}(\cos((n-k)x)-\cos((n+k)x))dx = \frac{1}{2}\left[\frac{\sin((n-k)x)}{n-k}-\frac{\sin((n+k)x)}{n+k}\right]_{-\pi}^{\pi}=0 }[/math]
    • שימו לב כי השתמשנו כאן בעובדה ש[math]\displaystyle{ n-k,n+k\neq 0 }[/math].
  • באופן דומה, לכל [math]\displaystyle{ 0\neq n\in\mathbb{N} }[/math] נקבל:
    • [math]\displaystyle{ \frac{1}{\pi}\int_{-\pi}^{\pi}\cos(nx)\cos(nx)dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}(\cos(2nx)+1)dx = \frac{1}{2\pi}\left[\frac{1}{2n}\sin(2nx)+x\right]_{-\pi}^{\pi}=1 }[/math]
  • עבור [math]\displaystyle{ n\neq k \in \mathbb{N} }[/math] נקבל:
    • [math]\displaystyle{ \int_{-\pi}^{\pi}\cos(nx)\cos(kx)dx = \frac{1}{2}\int_{-\pi}^{\pi}(\cos((n+k)x)+\cos((n-k)x))dx = \frac{1}{2}\left[\frac{\sin((n-k)x)}{n+k}+\frac{\sin((n-k)x)}{n+k}\right]_{-\pi}^{\pi}=0 }[/math]
    • שימו לב כי השתמשנו כאן בעובדה ש[math]\displaystyle{ n-k,n+k\neq 0 }[/math].
  • עבור [math]\displaystyle{ n,k\in \mathbb{N} }[/math] נקבל:
    • [math]\displaystyle{ \int_{-\pi}^{\pi}\cos(nx)\sin(kx)dx=0 }[/math] כיוון שמדובר באינטגרל בקטע סימטרי על פונקציה אי זוגית.
  • ולבסוף, עבור [math]\displaystyle{ n=0 }[/math] נקבל
    • [math]\displaystyle{ \frac{1}{\pi}\int_{-\pi}^{\pi}\cos(0)\cos(0)dx=\frac{1}{\pi}\int_{-\pi}^{\pi}1dx=2 }[/math]
  • שימו לב שכאשר מציבים 0 בsin מקבלים אפס, ולכן אין צורך בבדיקה הזו.


  • הערה חשובה:
    • למעשה כלל החישובים שעשינו לעיל מוכיחים שהקבוצה [math]\displaystyle{ \{\frac{1}{2},sin(x),cos(x),sin(2x),cos(2x),...\} }[/math] מהווה בסיס אורתונורמלי לפי המכפלה הפנימית [math]\displaystyle{ \langle f,g\rangle=\frac{1}{\pi}\int_{-\pi}^{\pi}(f\cdot g) dx }[/math]