מתמטיקה בדידה - ארז שיינר: הבדלים בין גרסאות בדף
שורה 196: | שורה 196: | ||
===איחוד בן מנייה של קבוצות בנות מנייה=== | ===איחוד בן מנייה של קבוצות בנות מנייה=== | ||
*תהי S קבוצה בת מנייה של קבוצות בנות מנייה, כלומר: | |||
**<math>|S|\leq\aleph_0</math> | |||
**<math>\forall X\in S:|X|\leq\aleph_0</math> | |||
*אזי גם האיחוד הכללי הוא בן מנייה: | |||
**<math>|\cup_{X\in S}X|\leq \aleph_0</math> | |||
*מסקנה: אוסף תתי הקבוצות הסופיות של המספרים הטבעיים הוא בן מנייה. | |||
<videoflash>0S6r0s2SnNc</videoflash> | <videoflash>0S6r0s2SnNc</videoflash> |
גרסה מ־07:54, 9 ביוני 2020
חומר עזר
סרטוני ותקציר הרצאות
פרק 1 - מבוא ללוגיקה מתמטית
פסוקים, קשרים, כמתים, פרדיקטים
תרגול
אינדוקציה
תרגול
פרק 2 - מבוא לתורת הקבוצות
קבוצות ופעולות על קבוצות
שיטות הוכחה בסיסיות
איחוד וחיתוך כלליים
קבוצת החזקה
תרגול
פרק 3 - יחסים
מכפלה קרטזית ויחסים
יחסי שקילות
תרגול
יחסי סדר
איברים מינימליים ומקסימליים, וחסמים
תרגול
פרק 4 - פונקציות
הגדרת פונקציות
חח"ע ועל, תמונה ותמונה הפוכה
הרכבת פונקציות, פונקציות הפיכות
פונקציה מוגדרת היטב
תרגול
פרק 5 - עוצמות
מבוא
השוואת עוצמות
- A שקולת עוצמה לB או עוצמתה של A שווה לB, אם קיימת פונקציה הפיכה (חח"ע ועל) [math]\displaystyle{ f:A\to B }[/math].
- במקרה זה מסמנים [math]\displaystyle{ A\sim B }[/math] או [math]\displaystyle{ |A|=|B| }[/math].
- כל קבוצה שקולת עוצמה לעצמה
- אם A שקולת עוצמה לB, גם B שקולת עוצמה לA
- אם A שקולת עוצמה לB וB שקולת עוצמה לC אזי A שקולת עוצמה לC
- עוצמתה של A קטנה או שווה לזו של B, אם קיימת פונקציה חח"ע [math]\displaystyle{ f:A\to B }[/math].
- במקרה זה מסמנים [math]\displaystyle{ |A|\leq |B| }[/math]
- כל קבוצה A השקולת עוצמה לקבוצת הטבעיים מסומנת [math]\displaystyle{ |A|=\aleph_0 }[/math]
- כל קבוצה A השקולת עוצמה לקבוצת הממשיים מסומנת [math]\displaystyle{ |A|=\aleph }[/math]
משפט קנטור
- [math]\displaystyle{ |A|\lt |P(A)| }[/math]
קבוצות בנות מנייה
- קבוצה A נקראת בת מנייה אם [math]\displaystyle{ |A|\leq \aleph_0 }[/math]
- כל קבוצה A בת מנייה אינסופית מקיימת [math]\displaystyle{ |A|=\aleph_0 }[/math]
חשבון עוצמות (אריתמטיקה של עוצמות)
חיבור עוצמות
- תהיינה שתי עוצמות a,b ותהיינה שתי נציגות זרות לעוצמות A,B.
- נגדיר [math]\displaystyle{ a+b=|A\cup B| }[/math], הגדרה זו אינה תלוייה בבחירת הנציגות.
כפל עוצמות
- תהיינה שתי עוצמות a,b ותהיינה שתי נציגות לעוצמות A,B.
- נגדיר [math]\displaystyle{ a\cdot b=|A\times B| }[/math], הגדרה זו אינה תלוייה בבחירת הנציגות.
חזקת עוצמות
- תהיינה שתי עוצמות a,b ותהיינה שתי נציגות לעוצמות A,B.
- נגדיר את [math]\displaystyle{ A^B }[/math] להיות אוסף כל הפונקציות מB לA (מהמעריך לבסיס).
- נגדיר [math]\displaystyle{ a^b=|A^B| }[/math], הגדרה זו אינה תלוייה בבחירת הנציגות.
- חוקי חזקות
- תהיינה עוצמות a,b,c אזי
- [math]\displaystyle{ a^b\cdot a^c = a^{b+c} }[/math]
- [math]\displaystyle{ (a^b)^c = a^{b\cdot c} }[/math]
- [math]\displaystyle{ a^b\cdot c^b = (a\cdot c)^b }[/math]
עוצמת קבוצת החזקה
- [math]\displaystyle{ |P(A)|=2^{|A|} }[/math]
השוואת חשבון עוצמות
- תהיינה עוצמות a,b,c,d כך ש [math]\displaystyle{ a\leq c }[/math] וכן [math]\displaystyle{ b\leq d }[/math] אזי:
- [math]\displaystyle{ a+b\leq c+d }[/math]
- [math]\displaystyle{ a\cdot b\leq c\cdot d }[/math]
- אם בנוסף נתון כי [math]\displaystyle{ c\neq 0 }[/math] אזי
- [math]\displaystyle{ a^b\leq c^d }[/math]
משפט קנטור-שרדר-ברנשטיין
- אם [math]\displaystyle{ |A|\leq |B| }[/math] וגם [math]\displaystyle{ |B|\leq |A| }[/math] אזי [math]\displaystyle{ A\sim B }[/math]
למת נקודת השבת
- תהי פונקציה עולה [math]\displaystyle{ h:P(A)\to P(A) }[/math] כלומר המקיימת לכל [math]\displaystyle{ X_1\subseteq X_2 }[/math] כי [math]\displaystyle{ h(X_1)\subseteq h(X_2) }[/math]
- אזי קיימת נק' שבת [math]\displaystyle{ K\subseteq A }[/math] כך ש [math]\displaystyle{ h(K)=K }[/math].
הוכחת המשפט
עוצמות קטעים ממשיים
- [math]\displaystyle{ |\mathbb{R}|=|[a,\infty)|=|[a,b]|=|(a,b)|=\aleph }[/math]
איחוד בן מנייה של קבוצות בנות מנייה
- תהי S קבוצה בת מנייה של קבוצות בנות מנייה, כלומר:
- [math]\displaystyle{ |S|\leq\aleph_0 }[/math]
- [math]\displaystyle{ \forall X\in S:|X|\leq\aleph_0 }[/math]
- אזי גם האיחוד הכללי הוא בן מנייה:
- [math]\displaystyle{ |\cup_{X\in S}X|\leq \aleph_0 }[/math]
- מסקנה: אוסף תתי הקבוצות הסופיות של המספרים הטבעיים הוא בן מנייה.
אקסיומת הבחירה ועקרון המקסימום של האוסדורף
אקסיומת הבחירה
- תהיינה [math]\displaystyle{ A,B\neq\emptyset }[/math] אזי [math]\displaystyle{ |A|\leq |B| }[/math] אם ורק אם קיימת [math]\displaystyle{ g:B\to A }[/math] על.
עקרון המקסימום של האוסדורף
אלף אפס היא העוצמה האינסופית הקטנה ביותר
(בהנחת עקרון המקסימום של האוסדורף)
השוואת עוצמות
סכום ומכפלה של עוצמות אינסופיות שווה לגדולה מבין העוצמות
הקשר בין עוצמת הטבעיים לעוצמת הממשיים