חתכי דדקינד: הבדלים בין גרסאות בדף
(←הקדמה) |
אין תקציר עריכה |
||
שורה 1: | שורה 1: | ||
=הקדמה= | |||
*אנחנו מעוניינים שבמערכת המספרים שלנו יהיה פתרון למשוואה <math>x^2=2</math> (שורש שתיים). | *אנחנו מעוניינים שבמערכת המספרים שלנו יהיה פתרון למשוואה <math>x^2=2</math> (שורש שתיים). | ||
שורה 25: | שורה 25: | ||
*הרעיון הזה של חיתוך ציר הרציונאליים סביב נקודה בלתי קיימת הוליד את '''חתכי דדקינד'''. | *הרעיון הזה של חיתוך ציר הרציונאליים סביב נקודה בלתי קיימת הוליד את '''חתכי דדקינד'''. | ||
=חתכי דדקינד= | |||
*'''הגדרה''': חתך דדקינד הוא קבוצה <math>A\subseteq\mathbb{Q}</math> המקיימת: | *'''הגדרה''': חתך דדקינד הוא קבוצה <math>A\subseteq\mathbb{Q}</math> המקיימת: | ||
שורה 42: | שורה 42: | ||
*עלינו להגיד פעולות בין חתכי דדקינד ולהוכיח שמדובר ב[[שדה]]. | *עלינו להגיד פעולות בין חתכי דדקינד ולהוכיח שמדובר ב[[שדה]]. | ||
*כאשר נגדיר את הפעולות, נזכור שמטרתינו היא להגדיר את הנקודות "החסרות" על הציר. | *כאשר נגדיר את הפעולות, נזכור שמטרתינו היא להגדיר את הנקודות "החסרות" על הציר. | ||
==פעולות בין חתכי דדקינד== | |||
===חיבור=== | |||
*יהיו שתי חתכים <math>A,B</math>, נגדיר את החיבור: | |||
**<math>A+B=\left\{a+b|a\in A,b\in B\right\}</math> | |||
*החיבור הוא חתך דדקינד בעצמו: | |||
**כיוון שA,B אינן ריקות גם A+B אינה ריקה. | |||
**סכום חסמי מלעיל של A וB חוסם את A+B. | |||
**יהי <math>a+b\in A+B</math>, כיוון שאיברי החתכים אינם חסמי מלעיל, קיימים <math>a<c\in A</math> וכן <math>b<d\in B</math> ולכן <math>a+b<c+d\in A+B</math> ו<math>a+b</math> אינו חסם מלעיל של <math>A+B</math> | |||
**יהי <math>m\in\mathbb{Q}</math> שאינו חסם מלעיל של <math>A+B</math>, לכן קיימים <math>m<a+b\in A+B</math>. כעת <math>m-a<b</math> כלומר <math>m-a</math> אינו חסם מלעיל של B ולכן שייך לקבוצה. סה"כ <math>m=a+(m-a)\in A+B</math>. |
גרסה מ־17:54, 4 בספטמבר 2020
הקדמה
- אנחנו מעוניינים שבמערכת המספרים שלנו יהיה פתרון למשוואה [math]\displaystyle{ x^2=2 }[/math] (שורש שתיים).
- הרי אחרת, מה המרחק מהנקודה [math]\displaystyle{ (1,1) }[/math] לראשית הצירים [math]\displaystyle{ (0,0) }[/math]?
- האם ייתכן שהפרבולה [math]\displaystyle{ y=x^2-2 }[/math] עולה מהנקודה [math]\displaystyle{ (0,-2) }[/math] אל הנקודה [math]\displaystyle{ (2,2) }[/math] בלי לחתוך את ציר האיקס?
- כיוון שאין פתרון למשוואה זו בשדה הרציונאליים, אנחנו רוצים לבנות את שדה הממשיים.
- כיצד ניתן לתאר את נקודת החיתוך החיובית של הפרבולה [math]\displaystyle{ y=x^2-2 }[/math] עם ציר האיקס באמצעות המספרים הרציונאליים אם כך?
(נבנה באמצעות גאוגברה.)
- ובכן, ניתן לומר שציר המספרים מתחלק לשניים - לפני שורש שתיים ואחרי שורש שתיים.
- כלומר, אולי אנחנו יכולים לייצג את נקודת החיתוך על ידי אוסף הנקודות שקטנות ממנה [math]\displaystyle{ \left\{x\in\mathbb{Q}| x\lt 0 \vee x^2 \lt 2\right\} }[/math], זו הקרן באיור.
- הרעיון הזה של חיתוך ציר הרציונאליים סביב נקודה בלתי קיימת הוליד את חתכי דדקינד.
חתכי דדקינד
- הגדרה: חתך דדקינד הוא קבוצה [math]\displaystyle{ A\subseteq\mathbb{Q} }[/math] המקיימת:
- [math]\displaystyle{ A\neq\emptyset }[/math]
- [math]\displaystyle{ A }[/math] חסומה מלעיל.
- לכל [math]\displaystyle{ m\in\mathbb{Q} }[/math] מתקיים כי [math]\displaystyle{ m\notin A }[/math] אם ורק אם [math]\displaystyle{ m }[/math] חסם מלעיל של [math]\displaystyle{ A }[/math]
- הערות ותזכורות:
- חסם מלעיל של קבוצה הוא מספר שגדול יותר מכל איברי הקבוצה.
- בחתך דדקינד אין מספר גדול ביותר, אחרת זה היה חסם מלעיל ששיך לקבוצה.
- אם מספר שייך לחתך, בוודאי כל מספר נמוך ממנו שייך לחתך הרי לא ייתכן שמספר נמוך ממנו הוא חסם מלעיל.
- הקרן באיור לעיל היא חתך דדקינד שתפקידו להגדיר את שורש שתיים.
- כיצד ניתן להתייחס לקבוצות כאלה בתור מספרים?
- עלינו להגיד פעולות בין חתכי דדקינד ולהוכיח שמדובר בשדה.
- כאשר נגדיר את הפעולות, נזכור שמטרתינו היא להגדיר את הנקודות "החסרות" על הציר.
פעולות בין חתכי דדקינד
חיבור
- יהיו שתי חתכים [math]\displaystyle{ A,B }[/math], נגדיר את החיבור:
- [math]\displaystyle{ A+B=\left\{a+b|a\in A,b\in B\right\} }[/math]
- החיבור הוא חתך דדקינד בעצמו:
- כיוון שA,B אינן ריקות גם A+B אינה ריקה.
- סכום חסמי מלעיל של A וB חוסם את A+B.
- יהי [math]\displaystyle{ a+b\in A+B }[/math], כיוון שאיברי החתכים אינם חסמי מלעיל, קיימים [math]\displaystyle{ a\lt c\in A }[/math] וכן [math]\displaystyle{ b\lt d\in B }[/math] ולכן [math]\displaystyle{ a+b\lt c+d\in A+B }[/math] ו[math]\displaystyle{ a+b }[/math] אינו חסם מלעיל של [math]\displaystyle{ A+B }[/math]
- יהי [math]\displaystyle{ m\in\mathbb{Q} }[/math] שאינו חסם מלעיל של [math]\displaystyle{ A+B }[/math], לכן קיימים [math]\displaystyle{ m\lt a+b\in A+B }[/math]. כעת [math]\displaystyle{ m-a\lt b }[/math] כלומר [math]\displaystyle{ m-a }[/math] אינו חסם מלעיל של B ולכן שייך לקבוצה. סה"כ [math]\displaystyle{ m=a+(m-a)\in A+B }[/math].