אלגברה לינארית 2 - ארז שיינר: הבדלים בין גרסאות בדף
שורה 72: | שורה 72: | ||
תכונת האי-שליליות של הנורמה מתקבלת בחינם, כי <math>||v||=\sqrt{\langle v,v\rangle} \geq 0</math> ממש לפי הגדרת פונקצית השורש. | תכונת האי-שליליות של הנורמה מתקבלת בחינם, כי <math>||v||=\sqrt{\langle v,v\rangle} \geq 0</math> ממש לפי הגדרת פונקצית השורש. | ||
כמו כן, נקבל כי <math>||v||=0</math> אם ורק אם <math>\langle v,v\rangle=0</math> אם ורק אם, לפי תכונת המכפלה הפנימית, <math>v=0_V</math> | |||
שורה 115: | שורה 116: | ||
כעת, נחזור להוכחת אי שיוויון המשולש | |||
כעת, נחזור להוכחת אי שיוויון המשולש. צ"ל כי <math>Re\left(\langle v, w\rangle\right)\leq ||v||\cdot ||w||</math> | |||
אם <math>v=0_V</math> או <math>w=0_V</math> התוצאה מיידית כי שני הצדדים שווים אפס. | |||
אחרת, נציב את הוקטורים המנורמלים <math>\frac{v}{||v||} , \frac{w}{||w||}</math> באי שיוויון העזר ונקבל: | |||
:<math>Re\left(\langle \frac{v}{||v||}, \frac{w}{||w||}\rangle\right)\leq \frac{||\frac{v}{||v||}||^2+||\frac{w}{||w||}||^2}{2}</math> | |||
ולכן | |||
:<math>Re\left(\frac{1}{||v||\cdot ||w||} \langle v, w\rangle\right)\leq \frac{1+1}{2}</math> | |||
:<math>\frac{1}{||v||\cdot ||w||} \cdot Re\left(\langle v, w\rangle\right)\leq \frac{1+1}{2}</math> | |||
וסה"כ, קיבלנו את מה שצריך: | |||
:<math>Re\left(\langle v, w\rangle\right)\leq ||v||\cdot ||w||</math> | |||
===מכפלה פנימית מושרית=== | ===מכפלה פנימית מושרית=== |
גרסה מ־13:40, 27 ביוני 2022
חומרי עזר
סרטונים ותקצירי הרצאות
פרק 1 - מכפלה פנימית ונורמה
מכפלה סקלרית
[math]\displaystyle{ v\cdot w = |v||u|\cos(\theta) }[/math]
מכפלה פנימית
יהי [math]\displaystyle{ V }[/math] מרחב וקטורי מעל [math]\displaystyle{ \mathbb{F}=\mathbb{R} }[/math] או [math]\displaystyle{ \mathbb{F}=\mathbb{C} }[/math]
מכפלה פנימית היא מכפלה [math]\displaystyle{ \langle \cdot, \cdot\rangle:V\times V\to \mathbb{F} }[/math] המקיימת את ארבע התכונות הבאות:
לכל [math]\displaystyle{ x,y\in V }[/math] ולכל [math]\displaystyle{ c\in\mathbb{F} }[/math] מתקיים כי:
- אדטיביות [math]\displaystyle{ \langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle }[/math]
- כפל בסקלר [math]\displaystyle{ \langle cx,y\rangle = c\langle x,y\rangle }[/math]
- הרמיטיות [math]\displaystyle{ \langle y,x\rangle = \overline{\langle x,y\rangle} }[/math]
- אי שליליות [math]\displaystyle{ \langle x,x\rangle \geq 0 }[/math] וכן [math]\displaystyle{ \langle x,x\rangle =0 }[/math] אם ורק אם [math]\displaystyle{ x=0 }[/math]
[math]\displaystyle{ \langle av_1 +bv_2 ,cw_1+dw_2\rangle = a\overline{c}\langle v_1,w_1\rangle + a\overline{d}\langle v_1,w_2\rangle+
b\overline{c}\langle v_2,w_1\rangle+b\overline{d}\langle v_2,w_2\rangle }[/math]
נורמה
יהי [math]\displaystyle{ V }[/math] מרחב וקטורי מעל [math]\displaystyle{ \mathbb{F}=\mathbb{R} }[/math] או [math]\displaystyle{ \mathbb{F}=\mathbb{C} }[/math]
נורמה היא פונקציה [math]\displaystyle{ ||\cdot||:V\to\mathbb{R} }[/math] המקיימת את שלושת התכונות הבאות.
לכל [math]\displaystyle{ x,y\in V }[/math] ולכל [math]\displaystyle{ c\in\mathbb{F} }[/math] מתקיים כי:
- אי שליליות [math]\displaystyle{ ||x|\geq 0 }[/math] וכן [math]\displaystyle{ ||x||=0 }[/math] אם ורק אם [math]\displaystyle{ x=0 }[/math]
- כפל בסקלר [math]\displaystyle{ ||cx|| = |c|\cdot ||x|| }[/math]
- אי שיוויון המשולש [math]\displaystyle{ ||x+y||\leq ||x||+||y|| }[/math]
נורמה מושרית
יהי [math]\displaystyle{ V }[/math] מרחב מכפלה פנימית מעל [math]\displaystyle{ \mathbb{F}=\mathbb{R} }[/math] או [math]\displaystyle{ \mathbb{F}=\mathbb{C} }[/math].
הנורמה המושרית מהמכפלה הפנימית היא הפונקציה [math]\displaystyle{ ||\cdot||:V\to\mathbb{R} }[/math] המוגדרת ע"י הנוסחא:
- [math]\displaystyle{ ||v||=\sqrt{\langle v,v\rangle} }[/math]
שימו לב: הפונקציה מוגדרת היטב -
מתכונת האי-שליליות של המכפלה הפנימית ידוע כי [math]\displaystyle{ 0\leq \langle v,v\rangle\in\mathbb{R} }[/math] ולכן מותר להוציא שורש.
הנורמה המושרית היא אכן נורמה
נוכיח כי הנורמה המושרית היא אכן נורמה.
תכונת האי-שליליות של הנורמה מתקבלת בחינם, כי [math]\displaystyle{ ||v||=\sqrt{\langle v,v\rangle} \geq 0 }[/math] ממש לפי הגדרת פונקצית השורש. כמו כן, נקבל כי [math]\displaystyle{ ||v||=0 }[/math] אם ורק אם [math]\displaystyle{ \langle v,v\rangle=0 }[/math] אם ורק אם, לפי תכונת המכפלה הפנימית, [math]\displaystyle{ v=0_V }[/math]
כעת, יהי סקלר [math]\displaystyle{ c\in\mathbb{C} }[/math] אזי
- [math]\displaystyle{ ||cv||=\sqrt{\langle cv,cv\rangle}=\sqrt{c\overline{c}\langle v,v\rangle}=\sqrt{|c|^2\langle v,v\rangle}=|c|\cdot \langle v,v\rangle=|c|\cdot ||v|| }[/math]
לבסוף, עלינו להוכיח את אי שיוויון המשולש, אך זה ידרוש קצת הכנה מקדימה.
צריך להוכיח כי:
- [math]\displaystyle{ ||v+w||\leq ||v||+||w|| }[/math]
כיוון ששני הצדדים אי שליליים, אפשר להעלות בריבוע ולקבל אי שיוויון שקול:
- [math]\displaystyle{ ||v+w||^2 \leq ||v||^2 +2||v||\cdot ||w||+||w||^2 }[/math]
נפתח את צד שמאל לפי ההגדרה של הנורמה:
- [math]\displaystyle{ ||v+w||^2=\langle v+w,v+w \rangle = \langle v,v \rangle + \langle v, w\rangle + \langle w, v\rangle + \langle w,w \rangle = }[/math]
- [math]\displaystyle{ =||v||^2 +\langle v, w\rangle + \overline{\langle v, w\rangle}+ ||w||^2 = ||v||^2 +2Re\left(\langle v, w\rangle\right) +||w||^2 }[/math]
כעת נחזור לאי השיוויון שצריך להוכיח, נצמצם את [math]\displaystyle{ ||v||^2+||w||^2 }[/math] משני האגפים ונחלק ב2, ונקבל את אי השיוויון השקול הבא:
- [math]\displaystyle{ Re\left(\langle v, w\rangle\right)\leq ||v||\cdot ||w|| }[/math]
נעצור על מנת להוכיח אי שיוויון עזר:
מתכונת האי שליליות, אנו יודעים כי
- [math]\displaystyle{ \langle v-w, v-w\rangle\geq 0 }[/math]
ובעזרת פיתוח דומה לעיל נקבל כי
- [math]\displaystyle{ 0\leq \langle v-w,v-w \rangle = ||v||^2 -2Re\left(\langle v, w\rangle\right) +||w||^2 }[/math]
מכאן נובע כי
- [math]\displaystyle{ Re\left(\langle v, w\rangle\right)\leq \frac{||v||^2+||w||^2}{2} }[/math]
כעת, נחזור להוכחת אי שיוויון המשולש. צ"ל כי [math]\displaystyle{ Re\left(\langle v, w\rangle\right)\leq ||v||\cdot ||w|| }[/math]
אם [math]\displaystyle{ v=0_V }[/math] או [math]\displaystyle{ w=0_V }[/math] התוצאה מיידית כי שני הצדדים שווים אפס.
אחרת, נציב את הוקטורים המנורמלים [math]\displaystyle{ \frac{v}{||v||} , \frac{w}{||w||} }[/math] באי שיוויון העזר ונקבל:
- [math]\displaystyle{ Re\left(\langle \frac{v}{||v||}, \frac{w}{||w||}\rangle\right)\leq \frac{||\frac{v}{||v||}||^2+||\frac{w}{||w||}||^2}{2} }[/math]
ולכן
- [math]\displaystyle{ Re\left(\frac{1}{||v||\cdot ||w||} \langle v, w\rangle\right)\leq \frac{1+1}{2} }[/math]
- [math]\displaystyle{ \frac{1}{||v||\cdot ||w||} \cdot Re\left(\langle v, w\rangle\right)\leq \frac{1+1}{2} }[/math]
וסה"כ, קיבלנו את מה שצריך:
- [math]\displaystyle{ Re\left(\langle v, w\rangle\right)\leq ||v||\cdot ||w|| }[/math]
מכפלה פנימית מושרית
- האם כל נורמה היא נורמה מושרית?
- האם ייתכן שנורמה תהיה הנורמה המושרית של שתי מכפלות פנימיות שונות?
לתשובות ולהוכחות קראו את הערך מכפלה פנימית מושרית.
פרק 2 - המרחב הניצב
- משפט הפירוק הניצב
- בא"נ והיטלים
- אי שיוויון בסל
- משפט פיתגורס
- גרם שמידט