מתמטיקה בדידה - ארז שיינר: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 492: שורה 492:


*דרך נוספת לזו המופיעה בסרטון:
*דרך נוספת לזו המופיעה בסרטון:
**בהמשך נוכיח כי לכל קבוצה אינסופית <math>B</math> מתקיים כי <math>|B|+|B|=|B|</math>
**בהמשך נוכיח כי לכל קבוצה אינסופית <math>X</math> מתקיים כי <math>|X|+|X|=|X|</math>
**לכן <math>|A|\leq |A\cup B|=|A|+|B\setminus A|\leq |A|+|A|=|A|</math> ולפי ק.ש.ב <math>|A|=|A\cup B|</math>.
**לכן <math>|A|\leq |A\cup B|=|A|+|B\setminus A|\leq |A|+|A|=|A|</math> ולפי ק.ש.ב <math>|A|=|A\cup B|</math>.
***שימו לב כי <math>B\setminus A</math> סופית ולכן קטנה יותר מהקבוצה האינסופית <math>A</math>.
**כמו כן <math>|A|=|A\setminus B|+|B\cap A|</math>
**כמו כן <math>|A|=|A\setminus B|+|B\cap A|</math>
**כעת <math>|A\setminus B|\leq|A\setminus B|+|B\cap A|\leq |A\setminus B|+|A\setminus B|=|A\setminus B|</math>.
**כעת <math>|A\setminus B|\leq|A\setminus B|+|B\cap A|\leq |A\setminus B|+|A\setminus B|=|A\setminus B|</math>.
***שימו לב כי <math>B\cap A</math> סופית ולכן קטנה יותר מהקבוצה האינסופית <math>A\setminus B</math>.
**לכן לפי ק.ש.ב <math>|A|=|A\setminus B|+|B\cap A|=|A\setminus B|</math>
**לכן לפי ק.ש.ב <math>|A|=|A\setminus B|+|B\cap A|=|A\setminus B|</math>



גרסה מ־18:05, 16 באוגוסט 2022

חומר עזר

סרטוני ותקציר הרצאות

פלייליסט של כל הסרטונים


פרק 1 - מבוא ללוגיקה מתמטית

פסוקים, קשרים, כמתים, פרדיקטים


תרגול

אינדוקציה

  • משפט האינדוקציה המתמטית
  • תהי סדרת טענות כך שמתקיימים שני התנאים הבאים:
    • הטענה הראשונה נכונה.
    • לכל [math]\displaystyle{ n\in \mathbb{N} }[/math] אם הטענה הn מתקיימת אז גם הטענה הn+1 מתקיימת.
  • אזי כל הטענות בסדרה נכונות



  • דוגמא:
  • [math]\displaystyle{ \sum_{k=1}^{2^{n-1}}\frac{1}{k} \gt \frac{n}{2} }[/math]


  • אינדוקציה שלמה (מלאה)
  • תהי סדרת טענות כך ש:
    • לכל [math]\displaystyle{ n\in \mathbb{N} }[/math] אם כל הטענות עד ולא כולל הטענה הn מתקיימות, אזי גם הטענה הn מתקיימת.
  • אזי כל הטענות בסדרה מתקיימות.
  • שימו לב: לפני הטענה הראשונה אין טענות, ולכן כולן מתקיימות באופן ריק. כלומר מנוסח התנאי נובע שצריך להוכיח שהטענה הראשונה מתקיימת.



  • פרדוקס הסוסים (או פתיתי השלג)


תרגול

פרק 2 - מבוא לתורת הקבוצות

קבוצות ופעולות על קבוצות

  • איבר שייך לקבוצה [math]\displaystyle{ a\in A }[/math] אם הוא אחד האיברים בקבוצה.
  • קבוצה מוכלת בקבוצה אחרת [math]\displaystyle{ A\subseteq B }[/math] אם [math]\displaystyle{ \forall a\in A : a\in B }[/math]


  • [math]\displaystyle{ \{1,2\}=\{2,1\} }[/math]
  • [math]\displaystyle{ \{1,1,2\}=\{1,2\} }[/math]


  • תהי קבוצה [math]\displaystyle{ U }[/math] ותהיינה [math]\displaystyle{ A,B\subseteq U }[/math]. נגדיר את:
    • קבוצת האיחוד [math]\displaystyle{ A\cup B =\{ x\in U:x\in A \or x\in B\} }[/math]
    • קבוצת החיתוך [math]\displaystyle{ A\cap B =\{ x\in U:x\in A \and x\in B\} }[/math]
    • קבוצת ההפרש [math]\displaystyle{ A\setminus B =\{ x\in U:x\in A \and x\not\in B\} }[/math]
    • קבוצת ההפרש הסימטרי [math]\displaystyle{ A\Delta B = (A\setminus B)\cup (B\setminus A) }[/math]
    • קבוצת המשלים [math]\displaystyle{ \overline{A}=\{x\in U:x\not\in A\} }[/math]


שיטות הוכחה בסיסיות

  • הוכחת טענות מכומתות - טענות 'לכל' וטענות 'קיים'



  • הוכחת הכלה בין קבוצות, ושיוויון בין קבוצות


איחוד וחיתוך כלליים

  • תהי S קבוצה של קבוצות, נגדיר:
    • [math]\displaystyle{ \cup_{A\in S}A = \{x|\exists A\in S :x\in A\} }[/math]
    • [math]\displaystyle{ \cap_{A\in S}A = \{x|\forall A\in S :x\in A\} }[/math]


קבוצת החזקה

  • [math]\displaystyle{ X\in P(A) \iff X\subseteq A }[/math]

תרגול

פרק 3 - יחסים

מכפלה קרטזית ויחסים


תכונות של יחסים

  • יהי R יחס על A (כלומר [math]\displaystyle{ R\subseteq A\times A }[/math]) אזי:
    • R נקרא רפלקסיבי אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים [math]\displaystyle{ aRa }[/math].
    • R נקרא סימטרי אם לכל [math]\displaystyle{ a,b\in A }[/math] המקיימים [math]\displaystyle{ aRb }[/math] מתקיים [math]\displaystyle{ bRa }[/math]
    • R נקרא אנטי-סימטרי אם לכל [math]\displaystyle{ a,b\in A }[/math] המקיימים [math]\displaystyle{ aRb\and bRa }[/math] מתקיים [math]\displaystyle{ a=b }[/math]
    • R נקרא טרנזיטיבי אם לכל [math]\displaystyle{ a,b,c\in A }[/math] המקיימים [math]\displaystyle{ aRb \and bRc }[/math] מתקיים [math]\displaystyle{ aRc }[/math]
    • R נקרא מלא אם לכל [math]\displaystyle{ a,b\in A }[/math] מתקיים כי [math]\displaystyle{ aRb\or bRa }[/math]


  • יהי R יחס מA לB (כלומר [math]\displaystyle{ R\subseteq A\times B }[/math]) אזי:
    • R נקרא חד-ערכי (ח"ע) אם לכל [math]\displaystyle{ a\in A }[/math] ולכל [math]\displaystyle{ b_1,b_2\in B }[/math] המקיימים [math]\displaystyle{ aRb_1 \and aRb_2 }[/math] מתקיים [math]\displaystyle{ b_1=b_2 }[/math]
    • R נקרא שלם אם לכל [math]\displaystyle{ a\in A }[/math] קיים [math]\displaystyle{ b\in B }[/math] כך ש [math]\displaystyle{ aRb }[/math]
    • R נקרא חד-חד-ערכי (חח"ע) אם לכל [math]\displaystyle{ a_1,a_2\in A }[/math] ולכל [math]\displaystyle{ b\in B }[/math] המקיימים [math]\displaystyle{ a_1Rb\and a_2Rb }[/math] מתקיים [math]\displaystyle{ a_1=a_2 }[/math]
    • R נקרא על אם לכל [math]\displaystyle{ b\in B }[/math] קיים [math]\displaystyle{ a\in A }[/math] כך ש [math]\displaystyle{ aRb }[/math]

יחסי שקילות

  • יחס R על קבוצה A נקרא יחס שקילות אם הוא רפלקסיבי, סימטרי וטרנזיטיבי.
  • יהי R יחס שקילות על A.
  • לכל [math]\displaystyle{ a\in A }[/math] מוגדרת קבוצת מחלקת השקילות של a ע"י:
    • [math]\displaystyle{ [a]_R=\{x\in A|aRx\} }[/math]
  • קבוצת כל קבוצות מחלקות השקילות נקראת קבוצת המנה:
    • [math]\displaystyle{ A/R=\{[a]_R:a\in A\} }[/math]


  • תהי קבוצה A. קבוצת תתי קבוצות [math]\displaystyle{ U\subseteq P(A) }[/math] נקראת חלוקה של A אם:
    • [math]\displaystyle{ \cup_{X\in U}X=A }[/math]
    • [math]\displaystyle{ \emptyset\notin U }[/math]
    • לכל [math]\displaystyle{ X_1,X_2\in U }[/math] אם [math]\displaystyle{ X_1\cap X_2\neq \emptyset }[/math] אזי [math]\displaystyle{ X_1=X_2 }[/math]


  • היחס המושרה מחלוקה:
  • תהי קבוצה A ותהי חלוקה שלה U. נגדיר יחס R על A על ידי:
    • [math]\displaystyle{ aRb }[/math] אם ורק אם קיימת [math]\displaystyle{ X\in U }[/math] כך ש[math]\displaystyle{ a,b\in X }[/math]


  • היחס המושרה מחלוקה הוא יחס שקילות.
  • קבוצת המנה היא חלוקה של A.
  • היחס המושרה מקבוצת המנה, הוא יחס השקילות המקורי; קבוצת המנה של יחס שקילות מושרה היא החלוקה המקורית.



תרגול

יחסי סדר

  • יחס R על קבוצה A נקרא יחס סדר חלקי אם הוא רפלקסיבי, אנטי-סימטרי וטרנזיטיבי



איברים מינימליים ומקסימליים, וחסמים

  • יהי R יחס סדר חלקי על קבוצה X, ותהי [math]\displaystyle{ A\subseteq X }[/math] תת קבוצה.
    • איבר [math]\displaystyle{ M\in A }[/math] נקרא מקסימלי בA אם לכל [math]\displaystyle{ a\in A }[/math] המקיים [math]\displaystyle{ MRa }[/math] מתקיים כי [math]\displaystyle{ a=M }[/math] (אין גדולים ממנו)
    • איבר [math]\displaystyle{ m\in A }[/math] נקרא מינימלי בA אם לכל [math]\displaystyle{ a\in A }[/math] המקיים [math]\displaystyle{ aRm }[/math] מתקיים כי [math]\displaystyle{ a=m }[/math] (אין קטנים ממנו)
    • איבר [math]\displaystyle{ M\in A }[/math] נקרא הגדול ביותר (מקסימום) בA אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים [math]\displaystyle{ aRM }[/math] (הוא גדול מכולם)
    • איבר [math]\displaystyle{ m\in A }[/math] נקרא הקטן ביותר (מינימום) בA אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים [math]\displaystyle{ mRa }[/math] (הוא קטן מכולם)
    • איבר [math]\displaystyle{ M\in X }[/math] נקרא חסם מלעיל של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים [math]\displaystyle{ aRM }[/math] (הוא גדול מכל איברי הקבוצה, אבל לאו דווקא נמצא בקבוצה)
    • איבר [math]\displaystyle{ m\in X }[/math] נקרא חסם מלרע של A אם לכל [math]\displaystyle{ a\in A }[/math] מתקיים [math]\displaystyle{ mRa }[/math] (הוא קטן מכל איברי הקבוצה, אבל לאו דווקא נמצא בקבוצה)
    • אם בקבוצת חסמי המלעיל של A יש איבר קטן ביותר הוא נקרא חסם עליון (supremum) של A.
    • אם בקבוצת חסמי המלרע של A יש איבר גדול ביותר הוא נקרא חסם תחתון (infimum) של A.


  • איבר גדול ביותר ביותר הוא יחיד.
  • אם חסם מלעיל שייך לקבוצה, אז הוא הגדול ביותר.
  • האיבר הגדול ביותר בקבוצה הוא איבר מקסימלי, ואין איברים מקסימליים אחרים.


  • האם תתכן קבוצה עם איבר מקסימלי יחיד שאינו האיבר הגדול ביותר בקבוצה?


  • ביחס ההכלה על קבוצת חזקה, האיחוד הכללי של קבוצת קבוצות הוא החסם העליון שלה, והחיתוך הכללי הוא החסם התחתון.
  • ביחס 'מחלק את' על הטבעיים, המחלק המשותף המקסימלי הוא החסם התחתון, והמכפלה המשותפת המינימלית הוא החסם העליון.


שרשראות

  • יחס סדר חלקי R על A נקרא מלא (או לינארי, או קווי) אם:
    • [math]\displaystyle{ \forall a,b\in A:aRb\or bRa }[/math]


  • יהי R יחס סדר חלקי על A, ותהי [math]\displaystyle{ S\subseteq A }[/math].
  • אזי [math]\displaystyle{ S }[/math] נקראת שרשרת אם היחס מלא עליה, כלומר [math]\displaystyle{ \forall a,b\in S:aRb\or bRa }[/math]

תרגול

פרק 4 - פונקציות

הגדרת פונקציות

  • יחס f מA לB נקרא פונקציה אם הוא ח"ע ושלם, ומסמנים במקרה זה [math]\displaystyle{ f:A\to B }[/math], וכן [math]\displaystyle{ f(a)=b\iff (a,b)\in f }[/math].
  • A נקרא תחום הפונקציה (או תחום הגדרה), B נקרא הטווח של הפונקציה.


  • שימו לב, הסרטון ישן, ושם פונקציה הוגדרה כיחס ח"ע בלבד, בניגוד להגדרה העדכנית שלנו בקורס.


חח"ע ועל, תמונה ותמונה הפוכה

  • תהי [math]\displaystyle{ f:A\to B }[/math] פונקציה. אזי:
    • f חח"ע אם לכל [math]\displaystyle{ x_1,x_2\in A }[/math] המקיימים [math]\displaystyle{ f(x_1)=f(x_2) }[/math] מתקיים כי [math]\displaystyle{ x_1=x_2 }[/math]
    • f על אם לכל [math]\displaystyle{ y\in B }[/math] קיים [math]\displaystyle{ x\in A }[/math] כך ש[math]\displaystyle{ f(x)=y }[/math]
    • תהי [math]\displaystyle{ X\subseteq A }[/math] נגדיר את קבוצת התמונה [math]\displaystyle{ f[X]=\{f(a)|a\in X\} }[/math]
    • תהי [math]\displaystyle{ Y\subseteq B }[/math] נגדיר את קבוצת התמונה ההפוכה [math]\displaystyle{ f^{-1}[Y]=\{a\in A|f(a)\in Y\} }[/math]
    • [math]\displaystyle{ f[]:P(A)\to P(B) }[/math] היא פונקצית התמונה, השולחת כל תת קבוצה לקבוצת התמונה שלה
    • [math]\displaystyle{ f^{-1}[]:P(B)\to P(A) }[/math] היא פונקצית התמונה ההפוכה, השולחת כל תת קבוצה לקבוצת התמונה ההפוכה שלה


  • שימו לב
    • [math]\displaystyle{ x\in f^{-1}[Y]\iff f(x)\in Y }[/math]
    • [math]\displaystyle{ y\in f[X] \iff \exist a\in X :f(a)=y }[/math]


הרכבת פונקציות, פונקציות הפיכות

  • תהיינה [math]\displaystyle{ f:A\to B }[/math] וכן [math]\displaystyle{ g:B\to C }[/math] אזי נגדיר את פונקצית ההרכבה [math]\displaystyle{ g\circ f:A\to C }[/math] ע"י [math]\displaystyle{ g\circ f(a)=g(f(a)) }[/math]
  • פעולת ההרכבה היא אסוציאטיבית.


  • תהי קבוצה A נגדיר את פונקצית הזהות [math]\displaystyle{ I_A:A\to A }[/math] ע"י [math]\displaystyle{ I_A(x)=x }[/math].
  • לכל פונקציה [math]\displaystyle{ f:A\to B }[/math] מתקיים כי [math]\displaystyle{ I_B\circ f = f\circ I_A = f }[/math]


  • פונקציה [math]\displaystyle{ f:A\to B }[/math] נקראת הפיכה אם קיימות פונקציות [math]\displaystyle{ g,h:B\to A }[/math] כך ש:
    • [math]\displaystyle{ g\circ f = I_A }[/math] וכן [math]\displaystyle{ f\circ h = I_B }[/math]
  • נשים לב כי
    • [math]\displaystyle{ h=I_A\circ h = (g\circ f)\circ h = g\circ (f\circ h)=g\circ I_B = g }[/math]
  • לכן אם פונקציה הפיכה, יש פונקציה יחידה שהופכת אותה (ההופכית), נסמנה [math]\displaystyle{ f^{-1}:B\to A }[/math].
  • שימו לב: עם סוגריים מרובעים זו פונקצית התמונה ההפוכה שיש לכל פונקציה ופועלת על תתי קבוצות, עם סוגריים עגולים זו הפונקציה ההופכית שיש רק להפיכות ופועלת על איברים.


פונקציה מוגדרת היטב

תרגול

תרגול בנושא פונקציות

תרגול נוסף בנושא פונקציות

פרק 5 - עוצמות

מבוא

השוואת עוצמות

  • A שקולת עוצמה לB או עוצמתה של A שווה לB, אם קיימת פונקציה הפיכה (חח"ע ועל) [math]\displaystyle{ f:A\to B }[/math].
  • במקרה זה מסמנים [math]\displaystyle{ A\sim B }[/math] או [math]\displaystyle{ |A|=|B| }[/math].
    • כל קבוצה שקולת עוצמה לעצמה
    • אם A שקולת עוצמה לB, גם B שקולת עוצמה לA
    • אם A שקולת עוצמה לB וB שקולת עוצמה לC אזי A שקולת עוצמה לC


  • עוצמתה של A קטנה או שווה לזו של B, אם קיימת פונקציה חח"ע [math]\displaystyle{ f:A\to B }[/math].
  • במקרה זה מסמנים [math]\displaystyle{ |A|\leq |B| }[/math]


  • כל קבוצה A השקולת עוצמה לקבוצת הטבעיים מסומנת [math]\displaystyle{ |A|=\aleph_0 }[/math]
  • כל קבוצה A השקולת עוצמה לקבוצת הממשיים מסומנת [math]\displaystyle{ |A|=\aleph }[/math]


משפט קנטור

  • [math]\displaystyle{ |A|\lt |P(A)| }[/math]

קבוצות בנות מנייה

  • קבוצה A נקראת בת מנייה אם [math]\displaystyle{ |A|\leq \aleph_0 }[/math]
  • כל קבוצה A בת מנייה אינסופית מקיימת [math]\displaystyle{ |A|=\aleph_0 }[/math]

חשבון עוצמות (אריתמטיקה של עוצמות)

חיבור עוצמות

  • תהיינה שתי עוצמות a,b ותהיינה שתי נציגות זרות לעוצמות A,B.
  • נגדיר [math]\displaystyle{ a+b=|A\cup B| }[/math], הגדרה זו אינה תלוייה בבחירת הנציגות.


כפל עוצמות

  • תהיינה שתי עוצמות a,b ותהיינה שתי נציגות לעוצמות A,B.
  • נגדיר [math]\displaystyle{ a\cdot b=|A\times B| }[/math], הגדרה זו אינה תלוייה בבחירת הנציגות.


חזקת עוצמות

  • תהיינה שתי עוצמות a,b ותהיינה שתי נציגות לעוצמות A,B.
  • נגדיר את [math]\displaystyle{ A^B }[/math] להיות אוסף כל הפונקציות מB לA (מהמעריך לבסיס).
  • נגדיר [math]\displaystyle{ a^b=|A^B| }[/math], הגדרה זו אינה תלוייה בבחירת הנציגות.


  • חוקי חזקות
  • תהיינה עוצמות a,b,c אזי
    • [math]\displaystyle{ a^b\cdot a^c = a^{b+c} }[/math]
    • [math]\displaystyle{ (a^b)^c = a^{b\cdot c} }[/math]
    • [math]\displaystyle{ a^b\cdot c^b = (a\cdot c)^b }[/math]



עוצמת קבוצת החזקה

  • [math]\displaystyle{ |P(A)|=2^{|A|} }[/math]


השוואת חשבון עוצמות

  • תהיינה עוצמות a,b,c,d כך ש [math]\displaystyle{ a\leq c }[/math] וכן [math]\displaystyle{ b\leq d }[/math] אזי:
    • [math]\displaystyle{ a+b\leq c+d }[/math]
    • [math]\displaystyle{ a\cdot b\leq c\cdot d }[/math]
  • אם בנוסף נתון כי [math]\displaystyle{ c\neq 0 }[/math] אזי
    • [math]\displaystyle{ a^b\leq c^d }[/math]

משפט קנטור-שרדר-ברנשטיין

  • אם [math]\displaystyle{ |A|\leq |B| }[/math] וגם [math]\displaystyle{ |B|\leq |A| }[/math] אזי [math]\displaystyle{ A\sim B }[/math]

למת נקודת השבת

  • תהי פונקציה עולה [math]\displaystyle{ h:P(A)\to P(A) }[/math] כלומר המקיימת לכל [math]\displaystyle{ X_1\subseteq X_2 }[/math] כי [math]\displaystyle{ h(X_1)\subseteq h(X_2) }[/math]
  • אזי קיימת נק' שבת [math]\displaystyle{ K\subseteq A }[/math] כך ש [math]\displaystyle{ h(K)=K }[/math].

הוכחת המשפט


עוצמות קטעים ממשיים

  • [math]\displaystyle{ |\mathbb{R}|=|[a,\infty)|=|[a,b]|=|(a,b)|=\aleph }[/math]



אקסיומת הבחירה ועקרון המקסימום של האוסדורף

אקסיומת הבחירה

  • תהי S קבוצת קבוצת לא ריקות, ונסמן את האיחוד הכללי ב [math]\displaystyle{ U=\cup_{X\in S}X }[/math].
  • אזי קיימת פונקצית בחירה [math]\displaystyle{ f:S\to U }[/math] הבוחרת איבר מתוך כל קבוצה, כלומר:
    • [math]\displaystyle{ \forall X\in S: f(X)\in X }[/math]


  • דוגמא:
    • תהי פונקציה על [math]\displaystyle{ f:A\to B }[/math] אזי קיימת תת קבוצה [math]\displaystyle{ X\subseteq A }[/math] כך ש [math]\displaystyle{ f:X\to B }[/math] חח"ע ועל.


  • תהיינה [math]\displaystyle{ A,B\neq\emptyset }[/math] אזי [math]\displaystyle{ |A|\leq |B| }[/math] אם ורק אם קיימת [math]\displaystyle{ g:B\to A }[/math] על.


  • בכיוון ראשון:
    • תהי [math]\displaystyle{ f:A\to B }[/math] חח"ע
    • כיוון ש[math]\displaystyle{ A\neq \emptyset }[/math] קיים [math]\displaystyle{ a\in A }[/math]
    • נגדיר פונקציה [math]\displaystyle{ g:B\to A }[/math] באופן הבא:
      • לכל [math]\displaystyle{ b\in B }[/math]
      • אם קיים [math]\displaystyle{ x\in A }[/math] כך ש [math]\displaystyle{ f(x)=b }[/math] נגדיר [math]\displaystyle{ f(b)=x }[/math] (בגלל החח"ע זה מוגדר היטב)
      • אם [math]\displaystyle{ b\not\in Im(f) }[/math] נגדיר [math]\displaystyle{ f(b)=a }[/math]
    • הפונקציה [math]\displaystyle{ g }[/math] שהגדרנו היא אכן על, כי לכל [math]\displaystyle{ x\in A }[/math] מתקיים כי [math]\displaystyle{ g(f(x))=x }[/math]
  • בכיוון שני:
    • תהי [math]\displaystyle{ g:B\to A }[/math] על, אזי כל הקבוצות באוסף [math]\displaystyle{ U=\left\{g^{-1}[\{a\}]|a\in A\right\} }[/math] אינן ריקות.
    • ניקח פונקצית בחירה [math]\displaystyle{ h:U\to B }[/math] ונגדיר [math]\displaystyle{ f:A\to B }[/math] ע"י [math]\displaystyle{ f(a)=h(g^{-1}[\{a\}]) }[/math]
    • אכן [math]\displaystyle{ f }[/math] חח"ע כי אם [math]\displaystyle{ f(a_1)=f(a_2)=b }[/math] אזי [math]\displaystyle{ b\in g^{-1}[\{a_1\}] }[/math] וכן [math]\displaystyle{ b\in g^{-1}[\{a_2\}] }[/math]
    • ולכן [math]\displaystyle{ g(b)=a_1 }[/math] וכן [math]\displaystyle{ g(b)=a_2 }[/math], כלומר [math]\displaystyle{ a_1=a_2 }[/math]


עקרון המקסימום של האוסדורף

  • תהי קבוצה A עם יחס סדר חלקי, תת קבוצה [math]\displaystyle{ S\subseteq A }[/math] נקראת שרשרת אם היחס מלא עליה (ניתן להשוות בין כל שני איברים בS).
  • שרשרת נקראת מקסימלית בA אם היא אינה מוכלת באף שרשרת אחרת.
  • עקרון המקסימום של האוסדורף אומר שכל שרשרת מוכלת בשרשרת מקסימלית.


  • דוגמא - אוסף עיגולים במישור שאינם חותכים זה את זה, ולא ניתן להוסיף אפילו עיגול אחד נוסף.



  • טענות שימושיות להמשך:
  • תהי [math]\displaystyle{ U }[/math] קבוצה של יחסים מ[math]\displaystyle{ A }[/math] ל [math]\displaystyle{ B }[/math], תהי [math]\displaystyle{ M\subseteq U }[/math] שרשרת ביחס ההכלה ונסמן את האיחוד הכללי של השרשרת ב[math]\displaystyle{ f=\cup_{R\in M} R }[/math]
  • אזי:
    • אם כל היחסים ב[math]\displaystyle{ M }[/math] ח"ע, אז גם [math]\displaystyle{ f }[/math] ח"ע
      • אכן, יהיו [math]\displaystyle{ (a,b_1),(a,b_2)\in f }[/math]
      • לכן קיימים [math]\displaystyle{ R_1,R_2\in M }[/math] כך ש [math]\displaystyle{ (a,b_1)\in R_1 }[/math] וכן [math]\displaystyle{ (a,b_2)\in R_2 }[/math]
      • כיוון ש[math]\displaystyle{ M }[/math] שרשרת, אזי [math]\displaystyle{ R_1\subseteq R_2 }[/math] (או ההפך) ולכן [math]\displaystyle{ (a,b_1),(a,b_2)\in R_2 }[/math]
      • כיוון ש[math]\displaystyle{ R_2 }[/math] ח"ע נובע כי [math]\displaystyle{ b_1=b_2 }[/math] כפי שרצינו.
    • אם כל היחסים ב[math]\displaystyle{ M }[/math] חח"ע, אזי גם [math]\displaystyle{ f }[/math] חח"ע
      • הוכחה דומה לח"ע


איחוד בן מנייה של קבוצות בנות מנייה

(בהנחת אקסיומת הבחירה)

  • תהי S קבוצה בת מנייה של קבוצות בנות מנייה, כלומר:
    • [math]\displaystyle{ |S|\leq\aleph_0 }[/math]
    • [math]\displaystyle{ \forall X\in S:|X|\leq\aleph_0 }[/math]
  • אזי גם האיחוד הכללי הוא בן מנייה:
    • [math]\displaystyle{ |\cup_{X\in S}X|\leq \aleph_0 }[/math]


  • מסקנה: אוסף תתי הקבוצות הסופיות של המספרים הטבעיים הוא בן מנייה.


  • הערה לסרטון: אנחנו משתמשים באקסיומת הבחירה כאשר "בוחרים" את הפונקציות החח"ע מהקבוצות באוסף אל הטבעיים.


השוואת עוצמות

(בהנחת עיקרון המקסימום של האוסדורף)

  • תהיינה שתי קבוצות A,B אזי [math]\displaystyle{ |A|\leq|B| }[/math] או [math]\displaystyle{ |A|\geq |B| }[/math]


  • נביט ב[math]\displaystyle{ U }[/math] אוסף היחסים הח"ע והחח"ע מ[math]\displaystyle{ A }[/math] ל[math]\displaystyle{ B }[/math], וניקח שרשרת מקסימלית ביחס ההכלה [math]\displaystyle{ M\subseteq U }[/math]
  • נסמן ב[math]\displaystyle{ f }[/math] את האיחוד הכללי על השרשרת [math]\displaystyle{ M }[/math]
  • ראינו שנובע במקרה זה כי [math]\displaystyle{ f }[/math] יחס ח"ע וחח"ע מ[math]\displaystyle{ A }[/math] ל[math]\displaystyle{ B }[/math].
    • אם [math]\displaystyle{ f }[/math] שלם, אזי [math]\displaystyle{ f:A\to B }[/math] פונקציה חח"ע ולכן [math]\displaystyle{ |A|\leq |B| }[/math]
    • אם [math]\displaystyle{ f }[/math] על, אזי [math]\displaystyle{ f:X\to B }[/math] פונקציה על עבור [math]\displaystyle{ X\subseteq A }[/math] ולכן [math]\displaystyle{ |B|\leq |X|\leq |A| }[/math]
    • אחרת, קיים זוג [math]\displaystyle{ (a,b)\in A\times B }[/math] כך ש [math]\displaystyle{ f\cup\{(a,b)\} }[/math] יחס ח"ע וחח"ע שניתן להוסיף לשרשרת [math]\displaystyle{ M }[/math] בסתירה למקסימליות שלה.


אלף אפס היא העוצמה האינסופית הקטנה ביותר

(בהנחת עקרון המקסימום של האוסדורף)

  • תהי A קבוצה אינסופית, אזי [math]\displaystyle{ \aleph_0\leq |A| }[/math]


  • דרך נוספת לזו המופיעה בסרטון:
    • נוכיח בהמשך כי ניתן להשוות עוצמה בין כל שתי קבוצות
    • אם [math]\displaystyle{ |A|\leq |\mathbb{N}| }[/math], כיוון ש[math]\displaystyle{ A }[/math] אינסופית נובע כי [math]\displaystyle{ |A|=\aleph_0 }[/math]
    • אחרת, [math]\displaystyle{ |\mathbb{N}|\leq |A| }[/math] ולכן [math]\displaystyle{ \aleph_0\leq |A| }[/math] כפי שרצינו.



  • תהי A קבוצה אינסופית, ותהי B קבוצה סופית, אזי:
    • [math]\displaystyle{ |A|=|A\cup B|=|A\setminus B| }[/math]


  • דרך נוספת לזו המופיעה בסרטון:
    • בהמשך נוכיח כי לכל קבוצה אינסופית [math]\displaystyle{ X }[/math] מתקיים כי [math]\displaystyle{ |X|+|X|=|X| }[/math]
    • לכן [math]\displaystyle{ |A|\leq |A\cup B|=|A|+|B\setminus A|\leq |A|+|A|=|A| }[/math] ולפי ק.ש.ב [math]\displaystyle{ |A|=|A\cup B| }[/math].
      • שימו לב כי [math]\displaystyle{ B\setminus A }[/math] סופית ולכן קטנה יותר מהקבוצה האינסופית [math]\displaystyle{ A }[/math].
    • כמו כן [math]\displaystyle{ |A|=|A\setminus B|+|B\cap A| }[/math]
    • כעת [math]\displaystyle{ |A\setminus B|\leq|A\setminus B|+|B\cap A|\leq |A\setminus B|+|A\setminus B|=|A\setminus B| }[/math].
      • שימו לב כי [math]\displaystyle{ B\cap A }[/math] סופית ולכן קטנה יותר מהקבוצה האינסופית [math]\displaystyle{ A\setminus B }[/math].
    • לכן לפי ק.ש.ב [math]\displaystyle{ |A|=|A\setminus B|+|B\cap A|=|A\setminus B| }[/math]


סכום ומכפלה של עוצמות אינסופיות שווה לגדולה מבין העוצמות

  • תהיינה עוצמות [math]\displaystyle{ a\leq b }[/math] אזי:
    • [math]\displaystyle{ b\leq a+b }[/math]
  • נניח בנוסף כי [math]\displaystyle{ 2\leq a\leq b }[/math] אזי:
    • [math]\displaystyle{ a+b\leq a\cdot b }[/math]
  • נניח בנוסף כי b אינסופית, ונקבל ביחד
    • [math]\displaystyle{ b\leq a+b \leq a\cdot b\leq b\cdot b =b }[/math] (המעבר [math]\displaystyle{ b\cdot b=b }[/math] מוכח בסרטון השני).
  • ולכן לפי משפט ק.ש.ב נקבל כי
    • [math]\displaystyle{ a+b=a\cdot b = b }[/math]


  • דוגמא - מה היא עוצמת קבוצת המספרים האי-רציונאליים?
  • [math]\displaystyle{ \mathbb{R}=\mathbb{Q}\cup (\mathbb{R}\setminus\mathbb{Q}) }[/math] (איחוד זר כמובן)
  • לכן [math]\displaystyle{ |\mathbb{R}|=|\mathbb{Q}|+ |(\mathbb{R}\setminus\mathbb{Q})| }[/math]
  • לכן [math]\displaystyle{ \aleph=\aleph_0 +|(\mathbb{R}\setminus\mathbb{Q})| }[/math]
  • לפי המשפט לעיל, סכום העוצמות הוא העוצמה הגדולה מבין השתיים.
  • כיוון ש [math]\displaystyle{ \aleph\neq \aleph_0 }[/math] נקבל כי [math]\displaystyle{ |(\mathbb{R}\setminus\mathbb{Q})|=\aleph }[/math]



עוצמה כפול עצמה

  • תהי קבוצה אינסופית [math]\displaystyle{ B }[/math] אזי [math]\displaystyle{ B\times B\sim B }[/math]


  • הוכחה:
  • תהי [math]\displaystyle{ S }[/math] קבוצת כל היחסים [math]\displaystyle{ R\subseteq (B\times B)\times B }[/math], כך שקיימת תת קבוצה [math]\displaystyle{ X\subseteq B }[/math] כך ש [math]\displaystyle{ R:X\times X\to X }[/math] פונקציה הפיכה.
  • כיוון ש[math]\displaystyle{ B }[/math] אינסופית, יש לה תת קבוצה [math]\displaystyle{ Y\subseteq B }[/math] כך ש [math]\displaystyle{ |Y|=\aleph_0 }[/math].
  • כיוון ש [math]\displaystyle{ \aleph_0\times\aleph_0=\aleph_0 }[/math] קיימת פונקציה הפיכה [math]\displaystyle{ R:Y\times Y\to Y }[/math].
  • נביט ביחס ההכלה על [math]\displaystyle{ S }[/math]. לפי עקרון המקסימום של האוסדורף, קיימת שרשרת מקסימלית [math]\displaystyle{ \{R\}\subseteq M\subseteq S }[/math].
  • נסמן ב[math]\displaystyle{ f }[/math] את האיחוד הכללי של השרשרת [math]\displaystyle{ f=\cup_{T\in M} T }[/math].
  • נוכיח כי קיימת [math]\displaystyle{ D\subseteq B }[/math] כך ש [math]\displaystyle{ f:D\times D\to D }[/math] פונקציה הפיכה, ואף [math]\displaystyle{ |D|=|B| }[/math] וכך נסיים את ההוכחה.


  • הוכחה כי [math]\displaystyle{ f\in S }[/math] פונקציה הפיכה [math]\displaystyle{ f:D\times D\to D }[/math] עבור תת קבוצה [math]\displaystyle{ D\subseteq B }[/math]:
  • ראשית, נגדיר את [math]\displaystyle{ D=\{d\in B | \exists a,b\in B:((a,b),d)\in f\} }[/math]
  • נוכיח כי [math]\displaystyle{ f\subseteq (D\times D)\times D }[/math]:
    • יהי זוג [math]\displaystyle{ ((a,b),d)\in f }[/math], לפי ההגדרה [math]\displaystyle{ d\in D }[/math]
    • כמו כן, לפי הגדרת האיחוד קיים [math]\displaystyle{ T\in M }[/math] כך ש [math]\displaystyle{ ((a,b),d)\in T }[/math].
    • קיימת [math]\displaystyle{ X\subseteq B }[/math] כך ש [math]\displaystyle{ T:X\times X\to X }[/math] פונקציה הפיכה.
    • כיוון ש [math]\displaystyle{ T }[/math] על, לכל [math]\displaystyle{ x\in X }[/math] קיימים [math]\displaystyle{ p,q\in X }[/math] כך ש [math]\displaystyle{ ((p,q),x)\in T }[/math] ולכן [math]\displaystyle{ ((p,q),x)\in f }[/math] ולכן [math]\displaystyle{ x\in D }[/math]
    • ביחד עם העובדה ש [math]\displaystyle{ a,b\in X }[/math] נובע כי [math]\displaystyle{ a,b\in D }[/math]
  • כיוון שכל איברי השרשרת הם יחסים ח"ע, גם [math]\displaystyle{ f }[/math] ח"ע.
  • כיוון שכל איברי השרשרת הם יחסים חח"ע, גם [math]\displaystyle{ f }[/math] חח"ע.
  • כעת נוכיח כי [math]\displaystyle{ f:D\times D\to D }[/math] יחס שלם:
    • יהיו [math]\displaystyle{ d_1,d_2\in D }[/math].
    • ראינו כי קיימים [math]\displaystyle{ T_1,T_2\in M }[/math] ואיברים [math]\displaystyle{ a_1,b_1,a_2,b_2\in D }[/math] כך ש [math]\displaystyle{ ((a_1,b_1),d_1)\in T_1 }[/math] וכן [math]\displaystyle{ ((a_2,b_2),d_2)\in T_2 }[/math]
    • כיוון ש[math]\displaystyle{ M }[/math] שרשרת, [math]\displaystyle{ T_1\subseteq T_2 }[/math] (או ההפך) ולכן [math]\displaystyle{ a_1,a_2,b_1,b_2\in X }[/math] עבור תת קבוצה [math]\displaystyle{ X\subseteq D }[/math] כך ש [math]\displaystyle{ T_2:X\times X\to X }[/math] פונקציה הפיכה.
    • לכן קיים [math]\displaystyle{ d_3\in X\subseteq D }[/math] כך ש [math]\displaystyle{ ((d_1,d_2),d_3)\in T_2 }[/math] ולכן [math]\displaystyle{ ((d_1,d_2),d_3)\in f }[/math] כלומר [math]\displaystyle{ f }[/math] שלם.
  • הוכחנו כי [math]\displaystyle{ f:D\times D\to D }[/math] היא פונקציה (יחס ח"ע ושלם) חח"ע, נותר להוכיח כי היא על:
    • יהי [math]\displaystyle{ d\in D }[/math]. ראינו כי קיים [math]\displaystyle{ T\in M }[/math] וקיימים [math]\displaystyle{ a,b\in D }[/math] כך ש [math]\displaystyle{ ((a,b),d)\in T }[/math] ולכן [math]\displaystyle{ ((a,b),d)\in f }[/math] ולכן הפונקציה על.


  • הוכחה כי [math]\displaystyle{ |D|=|B| }[/math]:
  • ראשית, נשים לב כי [math]\displaystyle{ Y\subseteq D }[/math] כיוון ש [math]\displaystyle{ R:Y\times Y\to Y }[/math] פונקציה הפיכה וכן [math]\displaystyle{ R\in M }[/math], ולכן [math]\displaystyle{ D }[/math] אינסופית.
  • כעת, נזכור שהוכחנו כי [math]\displaystyle{ |D\times D|=|D| }[/math].
  • נביט ב [math]\displaystyle{ B\setminus D }[/math] ונחלק למקרים:
  • אם [math]\displaystyle{ |B\setminus D|\leq D }[/math] אזי:
    • [math]\displaystyle{ |B|=|D|+|B\setminus D|\leq |D|+|D|\leq |D|\times |D| =|D| }[/math]
    • כמובן ש [math]\displaystyle{ |D|\leq |B| }[/math] ולפי ק.ש.ב נסיק כי במקרה זה [math]\displaystyle{ |B|=|D| }[/math] וסיימנו.
  • אם [math]\displaystyle{ |B\setminus D|\geq |D| }[/math] נראה כי נגיע לסתירה, ולכן מקרה זה בלתי אפשרי:
    • ניקח תת קבוצה [math]\displaystyle{ U\subseteq B\setminus D }[/math] כך ש [math]\displaystyle{ |U|=|D| }[/math].
    • לכן [math]\displaystyle{ |(U\times D) \cup (D\times U) \cup (U\times U)|=|D|+|D|+|D|=|D| }[/math] (הרי ראינו מקודם כי [math]\displaystyle{ |D|+|D|=|D| }[/math])
    • לכן קיימת פונקציה הפיכה [math]\displaystyle{ g:(U\times D) \cup (D\times U) \cup (U\times U)\to U }[/math].
    • האיחוד [math]\displaystyle{ h=f\cup g }[/math] הוא פונקציה הפיכה [math]\displaystyle{ h:(U\cup D)\times (U\cup D)\to (U\cup D) }[/math], ולכן [math]\displaystyle{ h\in S }[/math].
    • ניתן להוסיף את [math]\displaystyle{ h }[/math] לשרשרת [math]\displaystyle{ M }[/math] ולהגדיל אותה, בסתירה למקסימליות שלה.



הקשר בין עוצמת הטבעיים לעוצמת הממשיים

  • [math]\displaystyle{ 2^{\aleph_0}=\aleph }[/math] כלומר [math]\displaystyle{ P(\mathbb{N})\sim\mathbb{R} }[/math]


תרגול