משתמש:אור שחף/133 - תרגול/20.2.11: הבדלים בין גרסאות בדף
אין תקציר עריכה |
אין תקציר עריכה |
||
שורה 54: | שורה 54: | ||
ז"א בשביל האינטגרביליות בנוסף היינו צריכים להראות שלכל חלוקה <math>\Delta x\to0\implies\overline .I=\underline I</math> | ז"א בשביל האינטגרביליות בנוסף היינו צריכים להראות שלכל חלוקה <math>\Delta x\to0\implies\overline .I=\underline I</math> | ||
---- | |||
'''''יש טעות, היא תתוקן בהמשך'''''. | |||
'''דוגמה 2:''' חשב את השטח שמתחת לעקום <math>y=9-x^2</math> ומעל לקטע <math>[0,3]</math> כאשר <math>x_k^\star</math> פעם אחת נקוד קצה ימנית ופעם אחת נקודת קצה שמאלית. קבע בפרוט אם f אינטגרבילית. | '''דוגמה 2:''' חשב את השטח שמתחת לעקום <math>y=9-x^2</math> ומעל לקטע <math>[0,3]</math> כאשר <math>x_k^\star</math> פעם אחת נקוד קצה ימנית ופעם אחת נקודת קצה שמאלית. קבע בפרוט אם f אינטגרבילית. | ||
שורה 64: | שורה 67: | ||
<math>\underline S=\lim_{\Delta x\to0}\sum_{k=1}^n \Delta x\cdot f(\underbrace{\Delta x\cdot k}_{=x_k^\star})=\lim_{\Delta x\to0}\Delta x\sum_{k=1}^n (9-(\Delta x\cdot k)^2)=\lim_{\Delta x\to0}\Delta x\sum_{k=1}^n (9-\Delta x^2\cdot k^2)</math> | <math>\underline S=\lim_{\Delta x\to0}\sum_{k=1}^n \Delta x\cdot f(\underbrace{\Delta x\cdot k}_{=x_k^\star})=\lim_{\Delta x\to0}\Delta x\sum_{k=1}^n (9-(\Delta x\cdot k)^2)=\lim_{\Delta x\to0}\Delta x\sum_{k=1}^n (9-\Delta x^2\cdot k^2)</math> | ||
---- | |||
'''ד<math>|f|</math>וגמה 3:''' הוכח או הפרך: אם אינטגרבילית ב-<math>[a,b]</math> אז f אינטגרבילית ב-<math>[a,b]</math>. | |||
'''פתרון:''' הפרכה. נבחר פונקציה מהצורה <math>f(x)=\begin{cases}1\quad x\in\mathbb Q\\-1\quad x\not\in\mathbb Q\end{cases}</math>. ברור כי <math>|f|</math> אינטגרבילית (כי היא קבועה). לעומת זאת, אם נבחר חלוקה של מספרים אי רציונלים נחלק סכום שלילי, ואם נבחר חלוקה של מספרים רציונלים נקבל סכום חיובי. | |||
'''הערה:''' זוהי דוגמה טובה שמראה שיש להראות שכל חלוקה שואפת לאפס. | |||
'''הערה:''' נראה בהמשך כי אינטגרביליות לפי רימן שקולה לאינטגרביליות לפי דרבו (שם אפשרי לבחור כל נקודה בתת קטע). הפתרון במקרה זה יפה יותר. | |||
'''דוגמה 4:''' הוכח או הפרך: אם f חסומה ב-<math>[a,b]</math> ולכל <math>[c,d]\subseteq[a,b]</math> f אינטגרבילית ב-<math>[c,d]</math> אז f אינטגרבילית ב-<math>[a,b]</math>. | |||
'''הוכחה:''' רוצים להראות כי לכל <math>\varepsilon>0</math> יש חלוקה <math>T_\varepsilon</math> המקיימת ב-<math>[a,b]</math> ש-<math>\overline S(T_c)-\underline S(T_c)<\varepsilon</math>. נתון כי f אינטגרבילית ב-<math>[c,d]</math> ולכן יש חלוקה <math>T_{\varepsilon'}</math> שם מתקיים <math>\overline S(T_{\varepsilon'})-\underline S(T_{\varepsilon'})<\varepsilon</math>. נשים לב כי<math>T_{\varepsilon'}\cup\{a\}=T_\varepsilon</math>. נסמן <math>T_{\varepsilon'}=c,x_1,x_2,\dots,\underbrace{x_n}_b</math> ו-<math>T_\varepsilon=a,x_1,x_2,\dots,\underbrace{x_n}_b</math>. | |||
נבנה סכום דרבו עליון ותחתון. <math>\overline S(T_\varepsilon)=\sup_{x\in[a,c]} f(x)\cdot (c-a)+\overline S(T_{\varepsilon'})</math> ובאופן דומה: <math>\underline S(T_\varepsilon)=\inf_{x\in[a,c]} f(x)\cdot (c-a)+\underline S(T_{\varepsilon'})</math>. | |||
... | |||
{{משל}} | |||
'''דוגמה 5:''' חשב <math>\lim_{n\to\infty}\frac1n\left(e^\frac1n+e^\frac2n+\dots+e^\fracnn\right)</math> |
גרסה מ־16:32, 20 בפברואר 2011
אינטגרבליות
מטרה: לחשב שטח (דו-מימדי במקרה שלנו, כי אינפי מדבר על [math]\displaystyle{ \mathbb R }[/math]).
(1)
נציג שתי שיטות עיקריות לחישוב שטחים:
- אינטגרבליות לפי דרבו
- אינטגרבליות לפי רימן
היום נדבר על אינטגרבליות לפי דרבו.
אינטגרבליות לפי דרבו
תהי T חלוקה. נסמן [math]\displaystyle{ M_i=\sup_{x\in[x_{i-1},x_i]} f(x) }[/math] ו-[math]\displaystyle{ m_i=\inf_{x\in[x_{i-1},x_i)} f(x) }[/math]. נגדיר [math]\displaystyle{ \overline S(T)=\sum_{i=1}^n M_i \Delta x_i }[/math] וכן [math]\displaystyle{ \underline S(T)=\sum_{i=1}^n m_i \Delta x_i }[/math].
[math]\displaystyle{ \overline I=\inf\{\overline S(T):\ }[/math] חלוקה [math]\displaystyle{ T\} }[/math]
[math]\displaystyle{ \underline I=\sup\{\underline S(T):\ }[/math] חלוקה [math]\displaystyle{ T\} }[/math]
[math]\displaystyle{ \overline I=\underline I }[/math]
דוגמה 1: הוכח ע"פ הגרדת האינטגרל שהפונקציה [math]\displaystyle{ g(x)=x }[/math] מתחילה בקטע [math]\displaystyle{ [0,1] }[/math]. נמצא ע"פ ההגדרה את ערך האינטגרל.
פתרון:
דרך 1: חישוב ע"י משולש.
דרך 2: נבחר חלוקה מספיק קטנה השואפת ל-0. לדוגמה [math]\displaystyle{ \Delta x\le\frac1n }[/math] (דרוש כי רוצים שסכום הדרבו העליון יהא שווה לסכום דרבו התחתון).
במקרה זה נחלק את הקטע לפי הנקודות [math]\displaystyle{ 0,\tfrac1n,\tfrac2n,\dots,1 }[/math]. ז"א [math]\displaystyle{ \overline I=\lim_{n\to\infty} \underbrace{\frac1n}_{(1)}\underbrace{\sum_{i=1}^n \frac i n}_{(2)} }[/math].
- רוחב המלבן
- אורך המלבן
(נשים לב כי [math]\displaystyle{ f(x)=x }[/math] פונקציה עולה ולכן אם לוקחים נקוד קצה ימנית אז מקבלים סכום עליון)
באופן דומה נמצא סכום דרבו תחתון:
[math]\displaystyle{ \underline I=\lim_{n\to\infty} \frac1n \sum_{i=1}^n \frac i n }[/math]
...
אם נראה כי [math]\displaystyle{ \overline I=\underline I }[/math] נקבל כי f אינטגרבילית לפי דרבו (ואפילו נקבל את השטח).
עבור [math]\displaystyle{ \overline I }[/math] נרשום: [math]\displaystyle{ \overline I=\lim_{n\to\infty}\frac1{n^2}\sum_{i=1}^n i= }[/math]...
באופן דומה [math]\displaystyle{ \underline I=\lim_{n\to\infty}\frac1{n^2}\sum_{i=1}^n i=\lim_{n\to\infty}\frac{(n-1)n}{2}=\frac12 }[/math]
מסכנה: f אינטגרבילית לפי דרבו והשטח מתחת לגרף הוא [math]\displaystyle{ \tfrac12 }[/math]. הערה: נשים לב שלמעשה היינו צריכים להראות שכל חלוקה שואפת
ז"א בשביל האינטגרביליות בנוסף היינו צריכים להראות שלכל חלוקה [math]\displaystyle{ \Delta x\to0\implies\overline .I=\underline I }[/math]
יש טעות, היא תתוקן בהמשך.
דוגמה 2: חשב את השטח שמתחת לעקום [math]\displaystyle{ y=9-x^2 }[/math] ומעל לקטע [math]\displaystyle{ [0,3] }[/math] כאשר [math]\displaystyle{ x_k^\star }[/math] פעם אחת נקוד קצה ימנית ופעם אחת נקודת קצה שמאלית. קבע בפרוט אם f אינטגרבילית.
פתרון: תזכורת: חייבים [math]\displaystyle{ x_k^\star }[/math] בכל תת קטע כי מחפשים פעם ראשונה סופרימום ופעם שנייה אינפימום (אנחנו לא יודעים מפורשות איפה היא נמצאת).
נחלק את הקטע [math]\displaystyle{ [0,3] }[/math], נבחר חלוקה המקיימת [math]\displaystyle{ \Delta x\to0 }[/math]. (לדוגמה: בחרנו חלוקה [math]\displaystyle{ \Delta x=\frac3n }[/math].
כאשר [math]\displaystyle{ k\in\{0,1,2,\dots\} }[/math] מתקיים [math]\displaystyle{ \Delta x_k=\frac{3k}{n} }[/math]). נשים לב שבקטע f יורדת (נקודה ימנית תתן אינפימום ונקודה שמאלית תתן סופרימום).
[math]\displaystyle{ \underline S=\lim_{\Delta x\to0}\sum_{k=1}^n \Delta x\cdot f(\underbrace{\Delta x\cdot k}_{=x_k^\star})=\lim_{\Delta x\to0}\Delta x\sum_{k=1}^n (9-(\Delta x\cdot k)^2)=\lim_{\Delta x\to0}\Delta x\sum_{k=1}^n (9-\Delta x^2\cdot k^2) }[/math]
ד[math]\displaystyle{ |f| }[/math]וגמה 3: הוכח או הפרך: אם אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math] אז f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math].
פתרון: הפרכה. נבחר פונקציה מהצורה [math]\displaystyle{ f(x)=\begin{cases}1\quad x\in\mathbb Q\\-1\quad x\not\in\mathbb Q\end{cases} }[/math]. ברור כי [math]\displaystyle{ |f| }[/math] אינטגרבילית (כי היא קבועה). לעומת זאת, אם נבחר חלוקה של מספרים אי רציונלים נחלק סכום שלילי, ואם נבחר חלוקה של מספרים רציונלים נקבל סכום חיובי.
הערה: זוהי דוגמה טובה שמראה שיש להראות שכל חלוקה שואפת לאפס.
הערה: נראה בהמשך כי אינטגרביליות לפי רימן שקולה לאינטגרביליות לפי דרבו (שם אפשרי לבחור כל נקודה בתת קטע). הפתרון במקרה זה יפה יותר.
דוגמה 4: הוכח או הפרך: אם f חסומה ב-[math]\displaystyle{ [a,b] }[/math] ולכל [math]\displaystyle{ [c,d]\subseteq[a,b] }[/math] f אינטגרבילית ב-[math]\displaystyle{ [c,d] }[/math] אז f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math].
הוכחה: רוצים להראות כי לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] יש חלוקה [math]\displaystyle{ T_\varepsilon }[/math] המקיימת ב-[math]\displaystyle{ [a,b] }[/math] ש-[math]\displaystyle{ \overline S(T_c)-\underline S(T_c)\lt \varepsilon }[/math]. נתון כי f אינטגרבילית ב-[math]\displaystyle{ [c,d] }[/math] ולכן יש חלוקה [math]\displaystyle{ T_{\varepsilon'} }[/math] שם מתקיים [math]\displaystyle{ \overline S(T_{\varepsilon'})-\underline S(T_{\varepsilon'})\lt \varepsilon }[/math]. נשים לב כי[math]\displaystyle{ T_{\varepsilon'}\cup\{a\}=T_\varepsilon }[/math]. נסמן [math]\displaystyle{ T_{\varepsilon'}=c,x_1,x_2,\dots,\underbrace{x_n}_b }[/math] ו-[math]\displaystyle{ T_\varepsilon=a,x_1,x_2,\dots,\underbrace{x_n}_b }[/math].
נבנה סכום דרבו עליון ותחתון. [math]\displaystyle{ \overline S(T_\varepsilon)=\sup_{x\in[a,c]} f(x)\cdot (c-a)+\overline S(T_{\varepsilon'}) }[/math] ובאופן דומה: [math]\displaystyle{ \underline S(T_\varepsilon)=\inf_{x\in[a,c]} f(x)\cdot (c-a)+\underline S(T_{\varepsilon'}) }[/math].
... [math]\displaystyle{ \blacksquare }[/math]
דוגמה 5: חשב [math]\displaystyle{ \lim_{n\to\infty}\frac1n\left(e^\frac1n+e^\frac2n+\dots+e^\fracnn\right) }[/math]