משתמש:אור שחף/133 - תרגול/20.2.11: הבדלים בין גרסאות בדף
אין תקציר עריכה |
|||
שורה 1: | שורה 1: | ||
=אינטגרבליות= | = אינטגרבליות = | ||
'''מטרה:''' לחשב שטח (דו-מימדי במקרה שלנו, כי אינפי מדבר על <math>\mathbb R</math>). | '''מטרה:''' לחשב שטח (דו-מימדי במקרה שלנו, כי אינפי מדבר על <math>\mathbb R</math>). | ||
שורה 13: | שורה 13: | ||
== אינטגרבליות לפי דרבו == | == אינטגרבליות לפי דרבו == | ||
נסמן <math>M_i:=\sup_{x\in[x_{i-1},x_i]} f(x)</math> ו-<math>m_i:=\inf_{x\in[x_{i-1},x_i)} f(x)</math>. כמו כן, לכל חלוקה T נגדיר <math>\overline S(T)=\sum_{i=1}^n M_i \Delta x_i</math> ו-<math>\underline S(T)=\sum_{i=1}^n m_i \Delta x_i</math>. | |||
כמו כן נגדיר | כמו כן נגדיר | ||
שורה 21: | שורה 21: | ||
<math>\underline I=\sup\{\underline S(T):\ </math> חלוקה <math>T\}</math> | <math>\underline I=\sup\{\underline S(T):\ </math> חלוקה <math>T\}</math> | ||
}} | }} | ||
אם <math>\overline I=\underline I</math> אז f אינטגרבילית לפי דרבו וערך האינטגרל הוא | אם <math>\overline I=\underline I</math> אז f אינטגרבילית לפי דרבו וערך האינטגרל הוא ערך זה. | ||
===דוגמה 1=== | ===דוגמה 1=== | ||
הוכח ע"פ | הוכח ע"פ הגדרת האינטגרל שהפונקציה <math>f(x)=x</math> אינטגרבילית בקטע <math>[0,1]</math> ומצא ע"פ ההגדרה את ערך האינטגרל. | ||
====פתרון==== | ====פתרון==== | ||
'''דרך 1:''' חישוב ע"י משולש. | '''דרך 1:''' חישוב ע"י משולש. | ||
'''דרך 2:''' נבחר חלוקה מספיק קטנה השואפת ל-0. לדוגמה <math>\Delta x | '''דרך 2:''' נבחר חלוקה מספיק קטנה השואפת ל-0 (דרוש כי רוצים שסכום דרבו העליון יהא שווה לסכום דרבו התחתון). לדוגמה <math>\Delta x=\frac1n</math>. | ||
במקרה זה נחלק את הקטע לפי הנקודות <math>0,\tfrac1n,\tfrac2n,\dots,1</math> | במקרה זה נחלק את הקטע לפי הנקודות <math>0,\tfrac1n,\tfrac2n,\dots,\tfrac{n-1}n,1</math>, ז"א <math>\overline I=\lim_{n\to\infty} \underbrace{\frac1n}_{(1)}\underbrace{\sum_{i=1}^n \frac i n}_{(2)}</math>. | ||
# רוחב המלבן | # רוחב המלבן | ||
# אורך המלבן | # אורך המלבן | ||
(נשים לב כי <math>f(x)=x</math> פונקציה עולה ולכן, בגלל שלקחנו נקודת קצה ימנית, קיבלנו סכום עליון) | |||
באופן דומה נמצא סכום דרבו תחתון (עם נקודות קצה שמאליות): | |||
{{left| | |||
<math>\underline I=\lim_{n\to\infty} \frac1n \sum_{i=0}^{n-1} \frac i n</math> | |||
באופן דומה נמצא סכום דרבו תחתון: | }} | ||
<math>\underline I=\lim_{n\to\infty} \frac1n \sum_{i= | |||
אם נראה כי <math>\overline I=\underline I</math> נקבל כי f אינטגרבילית לפי דרבו (ואפילו נקבל את השטח). | אם נראה כי <math>\overline I=\underline I</math> נקבל כי f אינטגרבילית לפי דרבו (ואפילו נקבל את השטח). | ||
נחשב: | |||
<math>\overline I=\lim_{n\to\infty}\frac1{n^2}\sum_{i=1}^n i=</math> | {{left| | ||
<math>\overline I=\lim_{n\to\infty}\frac1{n^2}\sum_{i=1}^n i=\lim_{n\to\infty} \frac1{n^2}\cdot\frac{n(n+1)}2=\frac12</math> | |||
<math>\underline I=\lim_{n\to\infty}\frac1{n^2}\sum_{i=0}^{n-1} i=\lim_{n\to\infty} \frac1{n^2}\cdot\frac{(n-1)n}{2}=\frac12</math> | |||
}} | |||
לכן f אינטגרבילית לפי דרבו והשטח מתחת לגרף הוא <math>\tfrac12</math>. {{משל}} | |||
'''הערה:''' נשים לב שכדי להוכיח אינטגרביליות היינו יכולים להראות שכל חלוקה כך ש-<math>\Delta x\to0</math> מתקיים <math>\overline I=\underline I</math>. | |||
===דוגמה 2=== | |||
'''''יש טעות, היא תתוקן בהמשך'''''. | '''''יש טעות, היא תתוקן בהמשך'''''. | ||
חשב את השטח שמתחת לעקום <math>y=9-x^2</math> ומעל לקטע <math>[0,3]</math> כאשר <math>x_k^\star</math> פעם אחת נקודת קצה ימנית ופעם אחת נקודת קצה שמאלית. קבע בפרוט אם f אינטגרבילית. | |||
====פתרון==== | |||
''תזכורת:'' חייבים <math>x_k^\star</math> בכל תת קטע כי מחפשים פעם ראשונה סופרימום ופעם שנייה אינפימום (אנחנו לא יודעים מפורשות איפה היא נמצאת). | |||
נחלק את הקטע <math>[0,3]</math>, נבחר חלוקה המקיימת <math>\Delta x\to0</math>. (לדוגמה: בחרנו חלוקה <math>\Delta x=\frac3n</math>. | נחלק את הקטע <math>[0,3]</math>, נבחר חלוקה המקיימת <math>\Delta x\to0</math>. (לדוגמה: בחרנו חלוקה <math>\Delta x=\frac3n</math>. | ||
שורה 68: | שורה 66: | ||
<math>\underline S=\lim_{\Delta x\to0}\sum_{k=1}^n \Delta x\cdot f(\underbrace{\Delta x\cdot k}_{=x_k^\star})=\lim_{\Delta x\to0}\Delta x\sum_{k=1}^n (9-(\Delta x\cdot k)^2)=\lim_{\Delta x\to0}\Delta x\sum_{k=1}^n (9-\Delta x^2\cdot k^2)</math> | <math>\underline S=\lim_{\Delta x\to0}\sum_{k=1}^n \Delta x\cdot f(\underbrace{\Delta x\cdot k}_{=x_k^\star})=\lim_{\Delta x\to0}\Delta x\sum_{k=1}^n (9-(\Delta x\cdot k)^2)=\lim_{\Delta x\to0}\Delta x\sum_{k=1}^n (9-\Delta x^2\cdot k^2)</math> | ||
===דוגמה 3=== | |||
הוכח או הפרך: אם {{ltr|{{!}}f{{!}}}} אינטגרבילית ב-<math>[a,b]</math> אז f אינטגרבילית ב-<math>[a,b]</math>. | |||
''' | ====פתרון==== | ||
'''הפרכה:''' נבחר את הפונקציה <math>f(x)=\begin{cases}1&x\in\mathbb Q\\-1&x\not\in\mathbb Q\end{cases}=2D(x)-1</math> (כאשר <math>D(x)</math> היא פונקצית דיריכלה). ברור כי <math>|f|</math> אינטגרבילית (כי היא קבועה). לעומת זאת, אם נבחר חלוקה של מספרים אי רציונלים נחלק סכום שלילי, ואם נבחר חלוקה של מספרים רציונלים נקבל סכום חיובי. לכן f אינה אינטגרבילית. {{משל}} | |||
'''הערה:''' | '''הערה:''' זוהי דוגמה טובה שמראה שיש להוכיח שלכל חלוקה <math>\Delta x\to0</math>. | ||
''' | '''הערה:''' נראה בהמשך כי אינטגרביליות לפי רימן שקולה לאינטגרביליות לפי דרבו (שם אפשרי לבחור כל נקודה בתת קטע). הפתרון במקרה זה היה יכול להיות יפה יותר. | ||
===דוגמה 4=== | |||
הוכח או הפרך: אם f חסומה ב-<math>[a,b]</math> ולכל <math>[c,b]\subset[a,b]</math> f אינטגרבילית ב-<math>[c,b]</math> אז f אינטגרבילית ב-<math>[a,b]</math>. | |||
====פתרון==== | |||
'''הוכחה:''' רוצים להראות כי לכל <math>\varepsilon>0</math> יש חלוקה <math>T_\varepsilon</math> של <math>[a,b]</math> המקיימת ש-<math>\overline S(T_\varepsilon)-\underline S(T_\varepsilon)<\varepsilon</math>. נתון כי f אינטגרבילית ב-<math>[c,b]</math> ולכן יש חלוקה <math>T_{\varepsilon'}</math> שם מתקיים <math>\overline S(T_{\varepsilon'})-\underline S(T_{\varepsilon'})<\frac\varepsilon2</math>. נשים לב כי <math>T_{\varepsilon'}\cup\{a\}=T_\varepsilon</math>. נסמן <math>T_{\varepsilon'}=\{c,x_1,x_2,\dots,\underbrace{x_n}_b\}</math> ו-<math>T_\varepsilon=\{a,c,x_1,x_2,\dots,\underbrace{x_n}_b\}</math>. | |||
נבנה סכום דרבו עליון ותחתון: | |||
{{left| | |||
<math>\overline S(T_\varepsilon)=\sup_{x\in[a,c]} f(x)\cdot (c-a)+\overline S(T_{\varepsilon'})</math> | |||
<math>\underline S(T_\varepsilon)=\inf_{x\in[a,c]} f(x)\cdot (c-a)+\underline S(T_{\varepsilon'})</math> | |||
}} | |||
לכן: | |||
{| | |||
{{=|l=\overline S(T_\varepsilon)-\underline S(T_\varepsilon) | |||
|r=M(c-a)+\overline S(T_{\varepsilon'})-\underline S(T_{\varepsilon'})-m(c-a) | |||
|c=מתקיים <math>M=\sup_{x\in[a,c]} f(x)</math> וכן <math>m=\inf_{x\in[a,c]}</math>, לפיכך: | |||
}} | |||
{{=|r=(M-m)(c-a)+\overline S(T_{\varepsilon'})-\underline S(T_{\varepsilon'}) | |||
}} | |||
{{=|r=\frac\varepsilon2+\frac\varepsilon2 | |||
|o=\le | |||
|c=נבחר c כך ש-<math>c-a=\frac\varepsilon{2(M-m)}</math>: | |||
}} | |||
{{=|r=\varepsilon | |||
}} | |||
|} | |||
{{משל}} | {{משל}} | ||
===דוגמה 5=== | |||
חשב <math>\lim_{n\to\infty}\frac1n\left(e^{\frac1n}+e^{\frac2n}+\dots+e^{\frac{n-1}n}+e\right)</math> | |||
====פתרון==== | |||
<math>\lim_{n\to\infty}\frac1n\sum_{i=1}^n e^{\frac{i}{n}}</math> | נשים לב שמוגדר למעשה סכום של מלבנים. נסתכל על הפונקציה <math>e^x</math> בקטע <math>[0,1]</math>. <math>e^x</math> פונקציה אינטגרבילית. הגבול הנתון הוא <math>\lim_{n\to\infty}\frac1n\sum_{i=1}^n e^{\frac{i}{n}}</math>, וזוהי בדיוק ההגדרה של אינטגרל מסויים. לכן <math>\lim_{n\to\infty}\frac1n\sum_{i=1}^n e^{\frac{i}{n}}=\int\limits_0^1 e^xdx</math>. | ||
לפי המשפט היסודי זה שווה ל-<math>[e^x]_0^1=e^1-e^0=e-1</math> (הפונקציה הקדומה של <math>e^x</math> היא <math>e^x</math>). | לפי המשפט היסודי זה שווה ל-<math>[e^x]_0^1=e^1-e^0=e-1</math> (הפונקציה הקדומה של <math>e^x</math> היא <math>e^x</math>). {{משל}} | ||
'''משפט:''' תנאי הכרחי כדי שפונקציה <math>f(x)</math> תהיה אינטגרבילית ב-<math>[a,b]</math> הוא ש-f חסומה בקטע. | |||
'''משפט:''' אם f חסומה בקטע <math>[a,b]</math> ורציפה פרט אולי למספר סופי של נקודות אי רציפות אז f אינטגרבילית ב-<math>[a,b]</math>. | |||
===דוגמה 6=== | |||
קבע מי מהפונקציות הבאות אינטגרבילית: | |||
<ol> | |||
<li> | |||
<math>f(x)=\begin{cases}\tan(x)&0\le x<\tfrac\pi2\\1&x=\tfrac\pi2\end{cases}</math> בקטע <math>\left[0,\tfrac\pi2\right]</math>. | |||
====פתרון==== | |||
'''לא אינטגרבילית:''' מתקיים <math>\lim_{k\to\frac\pi2^-}f(x)=\lim_{k\to\frac\pi2^-}\tan(x)=\lim_{k\to\frac\pi2^-}\frac{\cos(x)}{\sin(x)}=\infty</math>. לפיכך f לא חסומה ולכן לא אינטגרבילית. {{משל}} | |||
</li> | |||
<li> | |||
<math>f(x)=\begin{cases}\sin\left(\frac1x\right)&x\ne0\\0&x=0\end{cases}</math> בקטע <math>[-1,1]</math>. | |||
====פתרון==== | |||
'''כן אינטגרבילית:''' נשים לב כי <math>-1\le\sin\left(\frac1x\right)\le1</math>. בנוסף יש לנו נקודת אי-רציפות יחידה ב-<math>x=0</math> ולכן f אינטגרבילית. {{משל}} | |||
</li> | |||
</ol> |
גרסה מ־18:57, 21 בפברואר 2011
אינטגרבליות
מטרה: לחשב שטח (דו-מימדי במקרה שלנו, כי אינפי מדבר על [math]\displaystyle{ \mathbb R }[/math]).
גרף (1)
נציג שתי שיטות עיקריות לחישוב שטחים:
- אינטגרבליות לפי דרבו
- אינטגרבליות לפי רימן
היום נדבר על הראשונה.
אינטגרבליות לפי דרבו
נסמן [math]\displaystyle{ M_i:=\sup_{x\in[x_{i-1},x_i]} f(x) }[/math] ו-[math]\displaystyle{ m_i:=\inf_{x\in[x_{i-1},x_i)} f(x) }[/math]. כמו כן, לכל חלוקה T נגדיר [math]\displaystyle{ \overline S(T)=\sum_{i=1}^n M_i \Delta x_i }[/math] ו-[math]\displaystyle{ \underline S(T)=\sum_{i=1}^n m_i \Delta x_i }[/math].
כמו כן נגדיר
[math]\displaystyle{ \overline I=\inf\{\overline S(T):\ }[/math] חלוקה [math]\displaystyle{ T\} }[/math]
[math]\displaystyle{ \underline I=\sup\{\underline S(T):\ }[/math] חלוקה [math]\displaystyle{ T\} }[/math]
אם [math]\displaystyle{ \overline I=\underline I }[/math] אז f אינטגרבילית לפי דרבו וערך האינטגרל הוא ערך זה.
דוגמה 1
הוכח ע"פ הגדרת האינטגרל שהפונקציה [math]\displaystyle{ f(x)=x }[/math] אינטגרבילית בקטע [math]\displaystyle{ [0,1] }[/math] ומצא ע"פ ההגדרה את ערך האינטגרל.
פתרון
דרך 1: חישוב ע"י משולש.
דרך 2: נבחר חלוקה מספיק קטנה השואפת ל-0 (דרוש כי רוצים שסכום דרבו העליון יהא שווה לסכום דרבו התחתון). לדוגמה [math]\displaystyle{ \Delta x=\frac1n }[/math].
במקרה זה נחלק את הקטע לפי הנקודות [math]\displaystyle{ 0,\tfrac1n,\tfrac2n,\dots,\tfrac{n-1}n,1 }[/math], ז"א [math]\displaystyle{ \overline I=\lim_{n\to\infty} \underbrace{\frac1n}_{(1)}\underbrace{\sum_{i=1}^n \frac i n}_{(2)} }[/math].
- רוחב המלבן
- אורך המלבן
(נשים לב כי [math]\displaystyle{ f(x)=x }[/math] פונקציה עולה ולכן, בגלל שלקחנו נקודת קצה ימנית, קיבלנו סכום עליון)
באופן דומה נמצא סכום דרבו תחתון (עם נקודות קצה שמאליות):
[math]\displaystyle{ \underline I=\lim_{n\to\infty} \frac1n \sum_{i=0}^{n-1} \frac i n }[/math]
אם נראה כי [math]\displaystyle{ \overline I=\underline I }[/math] נקבל כי f אינטגרבילית לפי דרבו (ואפילו נקבל את השטח).
נחשב:
[math]\displaystyle{ \overline I=\lim_{n\to\infty}\frac1{n^2}\sum_{i=1}^n i=\lim_{n\to\infty} \frac1{n^2}\cdot\frac{n(n+1)}2=\frac12 }[/math]
[math]\displaystyle{ \underline I=\lim_{n\to\infty}\frac1{n^2}\sum_{i=0}^{n-1} i=\lim_{n\to\infty} \frac1{n^2}\cdot\frac{(n-1)n}{2}=\frac12 }[/math]
לכן f אינטגרבילית לפי דרבו והשטח מתחת לגרף הוא [math]\displaystyle{ \tfrac12 }[/math]. [math]\displaystyle{ \blacksquare }[/math]
הערה: נשים לב שכדי להוכיח אינטגרביליות היינו יכולים להראות שכל חלוקה כך ש-[math]\displaystyle{ \Delta x\to0 }[/math] מתקיים [math]\displaystyle{ \overline I=\underline I }[/math].
דוגמה 2
יש טעות, היא תתוקן בהמשך.
חשב את השטח שמתחת לעקום [math]\displaystyle{ y=9-x^2 }[/math] ומעל לקטע [math]\displaystyle{ [0,3] }[/math] כאשר [math]\displaystyle{ x_k^\star }[/math] פעם אחת נקודת קצה ימנית ופעם אחת נקודת קצה שמאלית. קבע בפרוט אם f אינטגרבילית.
פתרון
תזכורת: חייבים [math]\displaystyle{ x_k^\star }[/math] בכל תת קטע כי מחפשים פעם ראשונה סופרימום ופעם שנייה אינפימום (אנחנו לא יודעים מפורשות איפה היא נמצאת).
נחלק את הקטע [math]\displaystyle{ [0,3] }[/math], נבחר חלוקה המקיימת [math]\displaystyle{ \Delta x\to0 }[/math]. (לדוגמה: בחרנו חלוקה [math]\displaystyle{ \Delta x=\frac3n }[/math].
כאשר [math]\displaystyle{ k\in\{0,1,2,\dots\} }[/math] מתקיים [math]\displaystyle{ \Delta x_k=\frac{3k}{n} }[/math]). נשים לב שבקטע f יורדת (נקודה ימנית תתן אינפימום ונקודה שמאלית תתן סופרימום).
[math]\displaystyle{ \underline S=\lim_{\Delta x\to0}\sum_{k=1}^n \Delta x\cdot f(\underbrace{\Delta x\cdot k}_{=x_k^\star})=\lim_{\Delta x\to0}\Delta x\sum_{k=1}^n (9-(\Delta x\cdot k)^2)=\lim_{\Delta x\to0}\Delta x\sum_{k=1}^n (9-\Delta x^2\cdot k^2) }[/math]
דוגמה 3
הוכח או הפרך: אם |f| אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math] אז f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math].
פתרון
הפרכה: נבחר את הפונקציה [math]\displaystyle{ f(x)=\begin{cases}1&x\in\mathbb Q\\-1&x\not\in\mathbb Q\end{cases}=2D(x)-1 }[/math] (כאשר [math]\displaystyle{ D(x) }[/math] היא פונקצית דיריכלה). ברור כי [math]\displaystyle{ |f| }[/math] אינטגרבילית (כי היא קבועה). לעומת זאת, אם נבחר חלוקה של מספרים אי רציונלים נחלק סכום שלילי, ואם נבחר חלוקה של מספרים רציונלים נקבל סכום חיובי. לכן f אינה אינטגרבילית. [math]\displaystyle{ \blacksquare }[/math]
הערה: זוהי דוגמה טובה שמראה שיש להוכיח שלכל חלוקה [math]\displaystyle{ \Delta x\to0 }[/math].
הערה: נראה בהמשך כי אינטגרביליות לפי רימן שקולה לאינטגרביליות לפי דרבו (שם אפשרי לבחור כל נקודה בתת קטע). הפתרון במקרה זה היה יכול להיות יפה יותר.
דוגמה 4
הוכח או הפרך: אם f חסומה ב-[math]\displaystyle{ [a,b] }[/math] ולכל [math]\displaystyle{ [c,b]\subset[a,b] }[/math] f אינטגרבילית ב-[math]\displaystyle{ [c,b] }[/math] אז f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math].
פתרון
הוכחה: רוצים להראות כי לכל [math]\displaystyle{ \varepsilon\gt 0 }[/math] יש חלוקה [math]\displaystyle{ T_\varepsilon }[/math] של [math]\displaystyle{ [a,b] }[/math] המקיימת ש-[math]\displaystyle{ \overline S(T_\varepsilon)-\underline S(T_\varepsilon)\lt \varepsilon }[/math]. נתון כי f אינטגרבילית ב-[math]\displaystyle{ [c,b] }[/math] ולכן יש חלוקה [math]\displaystyle{ T_{\varepsilon'} }[/math] שם מתקיים [math]\displaystyle{ \overline S(T_{\varepsilon'})-\underline S(T_{\varepsilon'})\lt \frac\varepsilon2 }[/math]. נשים לב כי [math]\displaystyle{ T_{\varepsilon'}\cup\{a\}=T_\varepsilon }[/math]. נסמן [math]\displaystyle{ T_{\varepsilon'}=\{c,x_1,x_2,\dots,\underbrace{x_n}_b\} }[/math] ו-[math]\displaystyle{ T_\varepsilon=\{a,c,x_1,x_2,\dots,\underbrace{x_n}_b\} }[/math].
נבנה סכום דרבו עליון ותחתון:
[math]\displaystyle{ \overline S(T_\varepsilon)=\sup_{x\in[a,c]} f(x)\cdot (c-a)+\overline S(T_{\varepsilon'}) }[/math]
[math]\displaystyle{ \underline S(T_\varepsilon)=\inf_{x\in[a,c]} f(x)\cdot (c-a)+\underline S(T_{\varepsilon'}) }[/math]
לכן:
מתקיים [math]\displaystyle{ M=\sup_{x\in[a,c]} f(x) }[/math] וכן [math]\displaystyle{ m=\inf_{x\in[a,c]} }[/math], לפיכך: | [math]\displaystyle{ }[/math] | [math]\displaystyle{ M(c-a)+\overline S(T_{\varepsilon'})-\underline S(T_{\varepsilon'})-m(c-a) }[/math] | [math]\displaystyle{ = }[/math] | [math]\displaystyle{ \overline S(T_\varepsilon)-\underline S(T_\varepsilon) }[/math] | [math]\displaystyle{ }[/math] | |
[math]\displaystyle{ }[/math] | [math]\displaystyle{ (M-m)(c-a)+\overline S(T_{\varepsilon'})-\underline S(T_{\varepsilon'}) }[/math] | [math]\displaystyle{ = }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | ||
נבחר c כך ש-[math]\displaystyle{ c-a=\frac\varepsilon{2(M-m)} }[/math]: | [math]\displaystyle{ }[/math] | [math]\displaystyle{ \frac\varepsilon2+\frac\varepsilon2 }[/math] | [math]\displaystyle{ \le }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] | |
[math]\displaystyle{ }[/math] | [math]\displaystyle{ \varepsilon }[/math] | [math]\displaystyle{ = }[/math] | [math]\displaystyle{ }[/math] | [math]\displaystyle{ }[/math] |
[math]\displaystyle{ \blacksquare }[/math]
דוגמה 5
חשב [math]\displaystyle{ \lim_{n\to\infty}\frac1n\left(e^{\frac1n}+e^{\frac2n}+\dots+e^{\frac{n-1}n}+e\right) }[/math]
פתרון
נשים לב שמוגדר למעשה סכום של מלבנים. נסתכל על הפונקציה [math]\displaystyle{ e^x }[/math] בקטע [math]\displaystyle{ [0,1] }[/math]. [math]\displaystyle{ e^x }[/math] פונקציה אינטגרבילית. הגבול הנתון הוא [math]\displaystyle{ \lim_{n\to\infty}\frac1n\sum_{i=1}^n e^{\frac{i}{n}} }[/math], וזוהי בדיוק ההגדרה של אינטגרל מסויים. לכן [math]\displaystyle{ \lim_{n\to\infty}\frac1n\sum_{i=1}^n e^{\frac{i}{n}}=\int\limits_0^1 e^xdx }[/math].
לפי המשפט היסודי זה שווה ל-[math]\displaystyle{ [e^x]_0^1=e^1-e^0=e-1 }[/math] (הפונקציה הקדומה של [math]\displaystyle{ e^x }[/math] היא [math]\displaystyle{ e^x }[/math]). [math]\displaystyle{ \blacksquare }[/math]
משפט: תנאי הכרחי כדי שפונקציה [math]\displaystyle{ f(x) }[/math] תהיה אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math] הוא ש-f חסומה בקטע.
משפט: אם f חסומה בקטע [math]\displaystyle{ [a,b] }[/math] ורציפה פרט אולי למספר סופי של נקודות אי רציפות אז f אינטגרבילית ב-[math]\displaystyle{ [a,b] }[/math].
דוגמה 6
קבע מי מהפונקציות הבאות אינטגרבילית:
-
[math]\displaystyle{ f(x)=\begin{cases}\tan(x)&0\le x\lt \tfrac\pi2\\1&x=\tfrac\pi2\end{cases} }[/math] בקטע [math]\displaystyle{ \left[0,\tfrac\pi2\right] }[/math].
פתרון
לא אינטגרבילית: מתקיים [math]\displaystyle{ \lim_{k\to\frac\pi2^-}f(x)=\lim_{k\to\frac\pi2^-}\tan(x)=\lim_{k\to\frac\pi2^-}\frac{\cos(x)}{\sin(x)}=\infty }[/math]. לפיכך f לא חסומה ולכן לא אינטגרבילית. [math]\displaystyle{ \blacksquare }[/math]
-
[math]\displaystyle{ f(x)=\begin{cases}\sin\left(\frac1x\right)&x\ne0\\0&x=0\end{cases} }[/math] בקטע [math]\displaystyle{ [-1,1] }[/math].
פתרון
כן אינטגרבילית: נשים לב כי [math]\displaystyle{ -1\le\sin\left(\frac1x\right)\le1 }[/math]. בנוסף יש לנו נקודת אי-רציפות יחידה ב-[math]\displaystyle{ x=0 }[/math] ולכן f אינטגרבילית. [math]\displaystyle{ \blacksquare }[/math]