88-132 סמסטר א' תשעא/ פתרון מועד ב': הבדלים בין גרסאות בדף
(יצירת דף עם התוכן "=המבחן של פרופ' זלצמן= ==שאלה 1== תהי סדרה a_n, ותהי E קבוצות הגבולות החלקיים שלה. הוכח/הפרך: E סגו...") |
אין תקציר עריכה |
||
שורה 8: | שורה 8: | ||
נניח r נקודת הצטברות של E, לכן לכל אפסילון גדול מאפס קיים גבול חלקי הקרוב לr עד כדי אפסילון, ולכל גבול חלקי כזה קיימת תת סדרה המתכנסת אליו. | נניח r נקודת הצטברות של E, לכן לכל אפסילון גדול מאפס קיים גבול חלקי הקרוב לr עד כדי אפסילון, ולכל גבול חלקי כזה קיימת תת סדרה המתכנסת אליו. | ||
לכן, עבור <math>\frac{1}{n}</math> קיימת תת סדרה המתכנסת למספר הקרוב לr עד כדי <math>\frac{1}{n}</math>. לכן קיים בסדרה הזו מקום אשר החל ממנו והלאה כל האיברים קרובים לr עד כדי <math>2 | לכן, עבור <math>\frac{1}{n}</math> קיימת תת סדרה המתכנסת למספר הקרוב לr עד כדי <math>\frac{1}{n}</math>. לכן קיים בסדרה הזו מקום אשר החל ממנו והלאה כל האיברים קרובים לr עד כדי <math>2/n</math> (המרחק בין גבול תת הסדרה לבין r ועוד מרחק בין איברי תת הסדרה לגבול תת הסדרה). | ||
נבחר איברים כאלה מתתי הסדרות, ובלבד שכל איבר יהיה אחרי האיבר הקודם. כך בנינו סדרה שאיבריה קרובים מרחק <math>2 | נבחר איברים כאלה מתתי הסדרות, ובלבד שכל איבר יהיה אחרי האיבר הקודם. כך בנינו סדרה שאיבריה קרובים מרחק <math>2/n</math> מr ולכן היא וודאי מתכנסת לr כפי שרצינו. |
גרסה מ־20:17, 10 במרץ 2011
המבחן של פרופ' זלצמן
שאלה 1
תהי סדרה a_n, ותהי E קבוצות הגבולות החלקיים שלה. הוכח/הפרך: E סגורה
הוכחה
על מנת להוכיח שE סגורה, יש להוכיח שהיא מכילה את כל נקודות ההצטברות שלה. כלומר, אם r היא נקודת הצטברות של E אזי היא גם גבול חלקי של E.
נניח r נקודת הצטברות של E, לכן לכל אפסילון גדול מאפס קיים גבול חלקי הקרוב לr עד כדי אפסילון, ולכל גבול חלקי כזה קיימת תת סדרה המתכנסת אליו.
לכן, עבור [math]\displaystyle{ \frac{1}{n} }[/math] קיימת תת סדרה המתכנסת למספר הקרוב לr עד כדי [math]\displaystyle{ \frac{1}{n} }[/math]. לכן קיים בסדרה הזו מקום אשר החל ממנו והלאה כל האיברים קרובים לr עד כדי [math]\displaystyle{ 2/n }[/math] (המרחק בין גבול תת הסדרה לבין r ועוד מרחק בין איברי תת הסדרה לגבול תת הסדרה). נבחר איברים כאלה מתתי הסדרות, ובלבד שכל איבר יהיה אחרי האיבר הקודם. כך בנינו סדרה שאיבריה קרובים מרחק [math]\displaystyle{ 2/n }[/math] מr ולכן היא וודאי מתכנסת לr כפי שרצינו.