אלגוריתם ללכסון מטריצה: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 2: שורה 2:


===מציאת פולינום אופייני===
===מציאת פולינום אופייני===
<math>f_A(x):=|xI-A|</math>
<math>p_A(x):=|xI-A|</math>


===מציאות ערכים עצמיים של המטריצה===
===מציאות ערכים עצמיים של המטריצה===

גרסה מ־18:13, 29 בנובמבר 2011

תהי מטריצה A. נרצה לדעת האם היא לכסינה ומהי המטריצה המלכסנת שלה

מציאת פולינום אופייני

[math]\displaystyle{ p_A(x):=|xI-A| }[/math]

מציאות ערכים עצמיים של המטריצה

x הינו ע"ע של A אם ורק אם x הינו שורש של הפולינום האופייני של A

מציאת מרחבים עצמיים של הערכים העצמיים

המרחב העצמי של ע"ע x מוגדר להיות:

[math]\displaystyle{ V_x:=\{v|Av=xv\} }[/math]


קל להוכיח כי [math]\displaystyle{ V_x=N(A-xI) }[/math]. במילים, המרחב העצמי של ע"ע הוא אוסף הפתרונות של המערכת ההומוגנית המתאימה למטריצה A-xI.


מציאת בסיסים למרחבים העצמיים

ידוע מלינארית 1 כי בסיס למרחב האפס מורכב מהפתרונות הפונדומנטליים של המערכת ההומוגנית

בדיקה האם המטריצה לכסינה, ואם כן מציאת המטריצה המלכסנת

אם סכום מימדי המרחבים העצמיים שווה למימד המרחב כולו (ניתן לגלות לפי מספר האיברים בבסיסים), אזי המטריצה לכסינה והמטריצה המלכסנת P היא המטריצה שעמודותיה הם הוקטורים מהבסיסים הנ"ל.

אחרת, המטריצה אינה לכסינה