שיחה:88-132 אינפי 1 סמסטר א' תשעב: הבדלים בין גרסאות בדף
שורה 88: | שורה 88: | ||
טענה: תהי <math>F(x)</math> פונקציה הגזירה ב - <math>x0</math>. אזי <math>F'</math> רציפה ב - <math>x0</math>. | טענה: תהי <math>F(x)</math> פונקציה הגזירה ב - <math>x0</math>. אזי <math>F'</math> רציפה ב - <math>x0</math>. | ||
<math>\frac{arctan(pi/4 e^(x^3))}{cos(sin (sin (cos 0)))))}</math> | <math>\frac{arctan(\pi/4 e^(x^3))}{cos(sin (sin (cos 0)))))}</math> |
גרסה מ־14:44, 15 בפברואר 2012
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
ארכיון
שאלות
איך מוכיחים שאין טור שמתבדר הכי לאט
כלומר לכל טור חיובי [math]\displaystyle{ \sum a_n }[/math] שמתבדר קיים טור [math]\displaystyle{ \sum b_n }[/math] מתבדר כך ש: [math]\displaystyle{ \frac{b_n}{a_n}\to 0 }[/math]
- בדומה למשפט רימן, ניתן "לדחוס" ו"לפזר" את האיברי הסדרה על מנת לקבל סדרה המתכנסת יותר מהר לאפס, שהטור עליה עדיין מתבדר. למשל אפשר את האיבר הראשון לחלק ל10 ולהפוך אותו לעשרה איברים, את האיבר הבא לחלק ב100 ולהפוך אותו למאה איברים וכן הלאה. (זה לא אלגוריתם מלא כמובן) --ארז שיינר
אבל הסדרה [math]\displaystyle{ a_n }[/math] לא בהכרח יורדת
איך מוכיחים את מבחן ראבה
נראה לי לא הוכחנו אותו בכיתה
- לא חשבתי על זה האמת, זה פשוט משפט ידוע --ארז שיינר
מבחן
מותר להשתמש במבחן במשפטים ממערכי התרגול/ התרגולים שלא הזכרנו בהרצאה? לגבי המשפטים וההוכחות שבאתר, לא את כולם צריך לדעת נכון? בהרצאה אמרו פחות
- זו שאלה למרצים, והמשפטים הם לפי מה שהמרצים אמרו. המשפטים באתר לא קשורים לזה באופן ישיר, פשוט השתדלנו לשים גם את מה שחייבים להוכיח. אני חושב שהדבר היחיד במערכי התרגול שלא מההרצאה הוא מבחן ראבה, לא? --ארז שיינר
- יש משפטים על רציפות במ"ש למשל שאם פונקציה רציפה במ"ש בכמה קטעים אז היא רציפה באיחוד שלהם ואם אני לא טועה גם זה שמכך שהנגזרת חסומה
- המשפטים האלה מההרצאה עד כמה שאני יודע. --ארז שיינר
בקשר לגבולות של סדרות
אם יש לי סדרה An של חיוביים ומצאתי סדרה Bn>An ששואפת לאפס האם גם An תשאף ל-0 אם כן למה?
- חוק הסנדביץ. [math]\displaystyle{ 0\leq a_n \leq b_n }[/math] --ארז שיינר
חזרה על התרגילים
בתרגיל 3 שאלה 4 סעיפים א,ב,ג
האם יש קשר בין an כלומר איברי הסדרה an1 an2.....
ל a אליו הוא שואף?? תודה
- לא, זה פשוט סימון לגבול. אפשר להחליף באות אחרת כמו L --ארז שיינר
גבול החסמים העליונים
האם מכך שידוע שגבול החסמים העליונים הוא מספר ממש נובע שהסדרה חסומה מלעיל?
- אני מניח שהכוונה לגבול החסמים העליונים כאשר מחסירים איברים מהסדרה. ברגע שיש חסם עליון ממשי החל משלב מסוים זה אומר שהסדרה חסומה על ידי המקסימום בין החסם העליון הזה לבין כל האיברים שנזרקו --ארז שיינר
פתרונות למבחנים
אם אני אכתוב את הפתרונות של מבחנים שונים עם Latex ב-Word, תעלו את קובץ הוורד של הפתרונות שלי לאתר?
- אם אתה כותב latex למה שלא תכתוב באתר? פתרונות באתר טובים בהרבה כיוון שקל לתקן אותם --ארז שיינר
אני כותב בעזרת [1] והאתר משום מה תמיד כותב לי עיבוד הנוסחה נכשל (שגיאת לקסינג), דוגמא: [math]\displaystyle{ [a_n=S_{n-1} \Delta ^ 2] }[/math] הבעיה העיקרית היא לרדת שורה, כי אני יכול רק עם שורת הקוד [math]\displaystyle{ a _ n=S _ {n-1} \Delta ^ 2 }[/math] ללא שימוש בתרגום ללייטקס, אבל זה עובד רק אם זאת שורה אחת, משום מה זה לא קורא את ה'\\'.
קראתי חלק מ-[2] אבל לא מצאתי איך לתקן את השגיאה הזאת... ⊙_☉ מהו הקוד של ירידת שורה?
- (לא ארז) הקוד הוא \\ , אבל כמו שאמרת יש בעיה בו פה.
- איך עשית את ה'עיניים' בסמיילי?
- תרדו שורה באופן הפשוט ביותר- תפתחו נוסחא חדשה ותכתבו אותה למטה. סה"כ הויקי אינו מסמך לאטך, אלא הוא מאפשר לכתוב נוסחאות בודדות בלאטך. תקנתי למשל את הבעייה שהוצגה לעיל, הסלאש סוגר מרובע היה מיותר. יש כמה הבדלים קטנים מלאטך, אבל הם לא משמעותיים כפי שאתם יכולים לראות במערכי התרגול שכולם כתובים בפורמט ויקי. --ארז שיינר
איך מוכיחים שפונקציה קמורה רציפה?
כלומר אם מתקיים [math]\displaystyle{ \forall 0\leq t\leq 1,x,x_0 \colon f((1-t)x+t(x_0))\leq (1-t)f(x)+tf(x_0) }[/math]
- נניח בשלילה כי היא אינה רציפה, לכן לפי היינה יש לה גבולות שונים על סדרות שונות. בעזרתן תוכל לסתור את הקמירות --ארז שיינר
- ואם זו אי רציפות סליקה, אזי או שהערך בנקודה גבוה מהגבול וזו סתירה לקמירות, או שהוא נמוך ואז ערכים הקרובים אליו סותרים את הקמירות אם מותחים מהערך בנקודה קו לנקודות באיזור --ארז שיינר
מתי השיעורי חזרה?
תודה
טענה: תהי [math]\displaystyle{ F(x) }[/math] פונקציה הגזירה ב - [math]\displaystyle{ x0 }[/math]. אזי [math]\displaystyle{ F' }[/math] רציפה ב - [math]\displaystyle{ x0 }[/math].
[math]\displaystyle{ \frac{arctan(\pi/4 e^(x^3))}{cos(sin (sin (cos 0)))))} }[/math]