שיחה:הסודות של גוגל: הבדלים בין גרסאות בדף
אין תקציר עריכה |
(←3.3) |
||
שורה 11: | שורה 11: | ||
אם אתה מתעקש על משהו של ממש, ניקח למשל <math>\epsilon=\frac{\delta_1}{2\delta_2}</math>, ואם <math>\delta_2=0</math> אז ניקח למשל <math>\epsilon=1</math>. | אם אתה מתעקש על משהו של ממש, ניקח למשל <math>\epsilon=\frac{\delta_1}{2\delta_2}</math>, ואם <math>\delta_2=0</math> אז ניקח למשל <math>\epsilon=1</math>. | ||
---- | |||
(קיבצתי כאן שאלות שלי בנושא שנותרו בלא מענה בדף השאלות והתשובות.) | (קיבצתי כאן שאלות שלי בנושא שנותרו בלא מענה בדף השאלות והתשובות.) |
גרסה מ־10:14, 29 בפברואר 2012
3.3
שאלת תלמיד: בהוכחה אפשר לקחת באופן מפורש [math]\displaystyle{ \epsilon=\frac{1}{2}min\left \{ [A\cdot |v|]_{i} \right \}_{1 \leq i\leq n } }[/math] , נכון? (כאשר [math]\displaystyle{ A \in C^{nxn} }[/math])
תשובה: הרבה יותר קל לחשוב קונספטואלית (בלי חישובים): נתונים שני וקטורים, האחד חיובי והשני אי-שלילי. ניקח את האיבר הקטן ביותר של הוקטור החיובי, נניח שהוא [math]\displaystyle{ \delta_1 }[/math]. ניקח את האיבר הגדול ביותר של הוקטור האי-שלילי, נקרא לו [math]\displaystyle{ \delta_2 }[/math]. ברור שיש [math]\displaystyle{ \epsilon }[/math] כך ש [math]\displaystyle{ \epsilon\delta_2 \lt \delta_1 }[/math], וממילא כל רכיבי הוקטור השני, אחרי שנכפילם ב [math]\displaystyle{ \epsilon }[/math], יהיו קטנים יותר מכל רכיבי הוקטור הראשון.
אם אתה מתעקש על משהו של ממש, ניקח למשל [math]\displaystyle{ \epsilon=\frac{\delta_1}{2\delta_2} }[/math], ואם [math]\displaystyle{ \delta_2=0 }[/math] אז ניקח למשל [math]\displaystyle{ \epsilon=1 }[/math].
(קיבצתי כאן שאלות שלי בנושא שנותרו בלא מענה בדף השאלות והתשובות.)
נורמת אינסוף
באילו תנאים מתקיים [math]\displaystyle{ ||AB||=n||A||||B|| }[/math]? (מה ניתן להסיק אם זה מתקיים?)
נורמת אינסוף 2
האם יש מ״פ על [math]\displaystyle{ F^{nxn} }[/math]
כך שנורמת אינסוף היא הנורמה המושרית שלה? אם לא, איך מראים את זה?