אינפי 2 לתיכוניסטים תש"ע - שאלות ותשובות: הבדלים בין גרסאות בדף

מתוך Math-Wiki
שורה 35: שורה 35:


::האם הרעיון לפתרון התרגיל, ואופן הביצוע שלו נכון (כפי שתיארתי כאן)? כי שמעתי מהרבה שהם עשו את התרגיל בדרך שונה לגמרי.
::האם הרעיון לפתרון התרגיל, ואופן הביצוע שלו נכון (כפי שתיארתי כאן)? כי שמעתי מהרבה שהם עשו את התרגיל בדרך שונה לגמרי.
==תרגיל 3- שאלה 3==
מה הכוונה בלמצוא את הערך בכל נקודה? הרי לא מצפים שנמצא את הערך באינסוף נקודות (-:

גרסה מ־15:33, 22 במרץ 2010

[math]\displaystyle{ \lim_{n\rightarrow\infty}f_n }[/math]

הוראות

כאן המקום לשאול שאלות. כל שעליכם לעשות הוא ללחוץ על [עריכה] (משמאל לכותרת "שאלות"), להוסיף בתחילת הדף את השורה הבאה:

== כותרת לשאלה ==

ארכיון

ארכיון 1

שאלות

שאלות

היי, (הוספתי שאלה למעלה באחד הדיונים מדוע המונה - Rn(x)- שואף ל0 לאחר גזירות מסוימות..)

ונתנה לכך תשובה, תסתכל בארכיון.
אבל ניתנה תשובה רק לשלב הראשון. הסתבכתי קצת עם הגזירה הראשונה. תוכל בבקשה להראות רק את השלב של הגזירה הראשונה ולהסביר למה עדיין יוצא שהמונה שואף ל0?

תשובה

השארית הינה:

[math]\displaystyle{ f(x)-f(x_0)-f'(x_0)(x-x_0)-f^{(2)}(x_0)/2 (x-x_0)^2 - ... }[/math] ולכן הנגזרת של זה הינה [math]\displaystyle{ f'(x)-f'(x_0) - f^{(2)}(x-x_0)-... }[/math]

והטענה דומה


יש לי שאלה נוספת. בהגדרה של קמירות כלפי מטה ומעלה, האם מדובר על סביבה מנוקבת של x0? כי בהגדרה אצלנו יש אי שיוויון ממש של h(x)>f(x) או h(x)<f(X), כלומר לא כוללים את x0 בסביבה, נכון? (אחרת זה לא היה גדול ממש או קטן ממש, אלא גדול שווה/קטן שווה.)

אני חושב שאתה צודק. המטרה של האי שיוויון היא שנקודה בפונקציה קבועה לא תהיה נקודת פיתול (אבל היא כן נקודת קיצון)

תרגיל 2 - שאלה 3a

האם מותר לי להגדיר פונקצייה חדשה שהיא ההפרש בין שתי הפונקציות, ולפתח אותה לפי טיילור סביב הנק' x0, ואז להראות שאני יכול לבחור כל x שגדול מ-[math]\displaystyle{ x_0 }[/math] כדי לקבל שערך הפונקצייה החדשה חיובי תמיד (ומכאן להסיק שאחת מהפונקציות גדולה מהשנייה)? כלומר, שלכל [math]\displaystyle{ x\gt x_0 }[/math] שאני אבחר קיים c מתאים שעבורו זה מתקיים, לכן זה מתקיים לכל x כזה. האם מותר לי לומר את זה?

לא מבין את מטרת השאלה.
האם הרעיון לפתרון התרגיל, ואופן הביצוע שלו נכון (כפי שתיארתי כאן)? כי שמעתי מהרבה שהם עשו את התרגיל בדרך שונה לגמרי.