מכינה למחלקת מתמטיקה/מערכי שיעור/7: הבדלים בין גרסאות בדף
שורה 25: | שורה 25: | ||
*<math>1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2n}=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}</math> | *<math>1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2n}=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}</math> | ||
*<math>\frac{1}{3!}+\frac{5}{4!}+\frac{11}{5!}+...+\frac{n^2+n-1}{(n+2)!}=\frac{1}{2}-\frac{n+1}{(n+2)!}</math> |
גרסה מ־21:24, 14 באוגוסט 2012
אינדוקציה מתמטית
בהנתן סדרת טענות [math]\displaystyle{ P(n) }[/math], אנו מוכיחים לפי אינדוקציה כי כל הטענות נכונות אם מתקיימים שני התנאים הבאים:
- הטענה הראשונה נכונה (כלומר, עבור n=1)
- כל טענה גוררת את הבאה אחריה. כלומר, לכל n אם נניח כי [math]\displaystyle{ P(n) }[/math] נכון, נוכל להוכיח כי [math]\displaystyle{ P(n+1) }[/math] נכון גם הוא
תרגילים
- [math]\displaystyle{ 1+2+...+n=\frac{n(n+1)}{2} }[/math]
- [math]\displaystyle{ 1^2+2^2+3^2+...+n^2=\frac{n(n+1)(2n+1)}{6} }[/math]
- [math]\displaystyle{ 1^3+2^3+...+n^3=(1+2+...+n)^2 }[/math]
- [math]\displaystyle{ (n+1)^2+(n+2)^2+...+(2n)^2=\frac{n(2n+1)(7n+1)}{6} }[/math]
- [math]\displaystyle{ 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2n}=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n} }[/math]
- [math]\displaystyle{ \frac{1}{3!}+\frac{5}{4!}+\frac{11}{5!}+...+\frac{n^2+n-1}{(n+2)!}=\frac{1}{2}-\frac{n+1}{(n+2)!} }[/math]