שיחה:88-133 תשעג סמסטר ב: הבדלים בין גרסאות בדף
שורה 98: | שורה 98: | ||
שוב, תודה מראש. | שוב, תודה מראש. | ||
*(לא מתרגל) אני חושב שהתשובה נמצאת בתגובה לשאלתך הראשונה (אגב מומלץ לערוך את השאלה הקודמת ולרכז הכל שם, יותר נוח ופחות מעמיס לכלל הקוראים). | |||
2. אם יש אסימפטוטה משופעת ax+b שבה a אינו 0, אז lim(f(x)=inf כלומר אינסוף, זה תנאי מקדים (שוב, בהתאמה באינסוף או מינוס אינסוף). אם a=b אז הגבול הוא b. | |||
אי אפשר פשוט לבדוק את הגבול באינסוף או מינוס אינסוף, כי אם הוא יוצא אינסוף אי אפשר לדעת אם יש אסימפטוטה משופעת או לא. שתי דוגמאות פשוטות לכך הן e^x ו-x, לשתיהן גבול אינסוף באינסוף, אך לראשונה אין אס' משופעת ולשנייה יש, שהיא בעצם היא עצמה. | |||
== למה שווה הגבול הבא: sin2x/x כאשר x שואף לאינסוף? == | == למה שווה הגבול הבא: sin2x/x כאשר x שואף לאינסוף? == |
גרסה מ־17:19, 2 באפריל 2013
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
שאלות
תרגילים
תרגילים למתמטיקאים זה גם התרגילים לתיכוניסטים?
תשובה: כן.--איתמר שטיין 14:46, 4 במרץ 2013 (IST)
תרגיל 1 שאלה ב
לגבי תרגיל 1. האם השאלה השניה (מציאת משוואת ישר) קשורה לחומר שנלמד, או שמדובר בטעות? (מאחר והנושא כלל לא נלמד בשיעור)
- משוואת ישר זה לא החלק הקשה, אתם אמורים לצלוח אותו באמצעות ידע מהתיכון. הקשר לנושא הוא המשפט "בעל שטח מינמלי", כאשר את זה מחשבים באמצעות חקירת פונקציות. --ארז שיינר
תרגיל 1 שאלה ב
המשולש המינימלי - הכוונה למשולש שנוצר על ידי הישר , ציר הX , ואנך לציר הX , או הישר , ציר הY ואנך לציר הY?
- אמנם זה לא התרגיל של הקבוצה שלי, אבל דווקא אני הייתי מנחש שזה משולש שהצלעות שלו הן שני הצירים והישר הנוסף. --ארז שיינר
מצטער על התגובה המאוחרת. ארז צודק. הכוונה למשולש שנוצר עם הצירים.--איתמר שטיין 20:23, 9 במרץ 2013 (IST)
תרגילים לקבוצת הבוגרים
צריך להגיש אחרי שבוע או שבועיים?
תרגיל 1 מתמטיקאים שאלה ב
יכול להיות שנפלה טעות והמשולש יוצר שטח מקסימלי ברביע הראשון?
- לא פתרתי את התרגיל, אבל על פניו זה לא נשמע סביר. אם ניקח את הקו הישר להיות כמעט מקביל לציר y או כמעט מקביל לציר x נקבל משולשים עם שטחים ששואפים לאינסוף. יותר סביר שיש לך טעות חישוב. --ארז שיינר
ושוב ארז צודק. אין טעות--איתמר שטיין 20:25, 9 במרץ 2013 (IST)
תרגיל 2 שאלה 2 מתמטיקאים
האם לא אמור להיות [math]\displaystyle{ \alpha\neq -1 }[/math]? אם [math]\displaystyle{ \alpha=1 }[/math] או [math]\displaystyle{ \alpha\neq -1 }[/math] ניתן לפתור באמצעות אינטגרציה בחלקים, אבל עם [math]\displaystyle{ \alpha=-1 }[/math] זה לא עובד, וצריך הצבה... --גיא 11:38, 14 במרץ 2013 (IST)
תשובה: אתה צודק. הטעות תוקנה.--איתמר שטיין 11:38, 15 במרץ 2013 (IST)
לימודים בפסח
יש לימודים בימי ראשון ושלישי הבאים? (31/3 וה 2/3)?
תשובה: לא. חוזרים ללימודים ביום רביעי 3.3.--איתמר שטיין 12:54, 29 במרץ 2013 (IDT)
ממתי אנחנו לומדים ביום רביעי?
???????????????????????????
(לא מתרגל / מרצה) ביום רביעי ממשיכים הלימודים לפי המערכת הרגילה. אם אינך לומד ביום רביעי, אתה חוזר ביום ראשון שאחריו --גיא 18:41, 30 במרץ 2013 (IDT)
אז רק מי שעושה פיזיקה לומד ביום רביעי?
תרגיל -3 אינפי2 מדעי המחשב...שאלה 1 סעיף 3...חקירת הפונקציה (y=x+sin(2x
כמה שאלות:
1 . לגבי מציאת אסימפטוטות אופקיות...
אם אני מבין נכון, אסימפטוטה אופקית זה מקרה פרטי של אסימפטוטה משופעת.
נניח אני רוצה לבדוק האם קיימת אסימפטוטה אופקית, מה שעליי לעשות, זה לבדוק מה קורה בגבול
lim((sin(2x)+x-(ax+b)) הזה? כאשר x שואף פעם אחת לאינסוף ופעם שנייה למינוס אינסוף?
2. בהמשך לשאלה 1. אם אני מקבל ש- a=0, אז y=b תיהיה אסימפטוטה אופקית?
3. באופן כללי, אפשר לומר שכדי למצוא אסימפטוטות משופעות/אופקיות, אני צריך לבצע את החישוב
lim(f(x)-(ax+b) כאשר x שואף פעם לאינסוף ופעם למינוס אינסוף, וכל תוצאה עבור a ו b תהווה אסימפטוטה משופעת כאשר
במקרה ספציפי שבו a=0, אקבל אסימפטוטה אופקית?
תודה מראש.
- (לא מתרגל) השיטה שאתה מציג נכונה אבל לפעמים לא יעילה, מפני שאתה צריך לנחש מראש את האסימפטוטה. אבל, לפי הפיתוח שהראת, הרי שיש אסימפטוטה אופקית אם ורק אם [math]\displaystyle{ lim f(x)-ax-b=0 }[/math] (ב+ או - אינסוף) וזה אם ורק אם [math]\displaystyle{ lim f(x)-ax= lim(b) }[/math], אבל לפי אריתמטיקה של גבולות אפשר לרשום [math]\displaystyle{ lim (f(x)-ax)/x=lim b/x=0 }[/math], כלומר [math]\displaystyle{ lim f(x)/x-a=0 }[/math] או [math]\displaystyle{ a=lim f(x)/x }[/math].
מכל זה אפשר להסיק - יש אסימפטוטה משופעת אם ורק אם קיים הגבול lim f(x)/x=a. אם כן, אז מוצאים את b על ידי הגבול b=lim f(x)-ax (שוב, הגבולות הם באינסוף או ב(-) אינסוף).
2. כן.
3.אין דבר כזה כל תוצאה, לא יכולות להיות שתי אס' אופקיות באינסוף. לפי האמור לעיל, אפשר להסיק שאם יש אסימפטוטה משופעת, היא אחת.
2 שאלות נוספות בהמשך להודעה האחרונה
1. אם אני בודק האם קיום אסימפטוטה משופעת לפונקציה בדרך שציינתי מקודם,ולפונקציה אין אסימפטוטה משופעת, מה יתקבל בחישוב הזה?..הרי אני לא יודע מראש אם יש או אין אסימפטוטה משופעת. נניח אני עושה את החישוב lim(f(x)-(ax+b) ולפונקציה אין אסימפטוטה משופעת, מה אני אקבל בחישוב הזה, וכיצד זה יתבטא בערכים של a ו b?
2. מה הסיבה שעל מנת למצוא אסימפטוטה משופעת של פונקציה, אי אפשר פשוט לבדוק את הגבול של הפונקציה באינסוף ובמינוס אינסוף?
שוב, תודה מראש.
- (לא מתרגל) אני חושב שהתשובה נמצאת בתגובה לשאלתך הראשונה (אגב מומלץ לערוך את השאלה הקודמת ולרכז הכל שם, יותר נוח ופחות מעמיס לכלל הקוראים).
2. אם יש אסימפטוטה משופעת ax+b שבה a אינו 0, אז lim(f(x)=inf כלומר אינסוף, זה תנאי מקדים (שוב, בהתאמה באינסוף או מינוס אינסוף). אם a=b אז הגבול הוא b.
אי אפשר פשוט לבדוק את הגבול באינסוף או מינוס אינסוף, כי אם הוא יוצא אינסוף אי אפשר לדעת אם יש אסימפטוטה משופעת או לא. שתי דוגמאות פשוטות לכך הן e^x ו-x, לשתיהן גבול אינסוף באינסוף, אך לראשונה אין אס' משופעת ולשנייה יש, שהיא בעצם היא עצמה.
למה שווה הגבול הבא: sin2x/x כאשר x שואף לאינסוף?
למה שווה הגבול הבא: sin2x/x כאשר x שואף לאינסוף?
- http://www.wolframalpha.com/input/?i=lim+sin2x%2Fx
- סינוס חסומה.
התכנסות במ"ש
אפשר רמז ל6 פה?
זה אינפי 1, אבל מעניין.