Mathwiki:ארגז חול: הבדלים בין גרסאות בדף
אין תקציר עריכה |
(←קישור) |
||
שורה 14: | שורה 14: | ||
==קישור== | ==קישור== | ||
[[file:flower.jpg|200px|link=http://www.math-wiki.com/index.php?title=%D7%A1%D7%A8%D7%98%D7%95%D7%A0%D7%99%D7%9D:%D7%9E%D7%AA%D7%9E%D7%98%D7%99%D7%A7%D7%94_%D7%91%D7%93%D7%99%D7%93%D7%94]] | [[file:flower.jpg|200px|link=http://www.math-wiki.com/index.php?title=%D7%A1%D7%A8%D7%98%D7%95%D7%A0%D7%99%D7%9D:%D7%9E%D7%AA%D7%9E%D7%98%D7%99%D7%A7%D7%94_%D7%91%D7%93%D7%99%D7%93%D7%94|alt= "הרצאות מצולמות בקורס מתמטיקה בדידה"|הרצאות מצולמות בקורס מתמטיקה בדידה]] |
גרסה מ־21:20, 7 ביולי 2013
שאלה
אני יודעת שאתמול הוכחת לנו את זה לפני השיעור חזרה, אבל זה היה ממש לא מסודר ולא ממש הצלחתי לעקוב, אז אני אשמח אם אתה (או מישהו אחר בכיף(:) יתן תשובה: ככה: T נורמלי הוכח ש- [math]\displaystyle{ im(T)=im(T^*) }[/math]
הוכחה
דבר ראשון נוכיח ש[math]\displaystyle{ ker(T)=ker(T^*) }[/math]. נניח [math]\displaystyle{ v \in kerT }[/math] לכן [math]\displaystyle{ Tv=0 }[/math] ולכן [math]\displaystyle{ \forall u: \lt T^*Tv,u\gt =\lt 0,u\gt =0 }[/math] אבל [math]\displaystyle{ T^*T=TT^* }[/math] ולכן [math]\displaystyle{ \forall u: \lt TT^*v,u\gt =0 }[/math] ולכן [math]\displaystyle{ \forall u: \lt T^*v,T^*u\gt =0 }[/math] ובפרט זה נכון עבור v=u ולכן [math]\displaystyle{ \lt T^*v,T^*v\gt =0 }[/math] ולכן [math]\displaystyle{ T^*v=0 }[/math] כלומר [math]\displaystyle{ v \in ker T^* }[/math]. בכיוון ההפוך ההוכחה דומה.
עכשיו נוכיח את הטענה. [math]\displaystyle{ v \in kerT }[/math] אם"ם [math]\displaystyle{ \forall u: \lt Tv,u\gt =0 }[/math] אם"ם [math]\displaystyle{ \forall u: \lt v,T^*u\gt =0 }[/math] אם"ם [math]\displaystyle{ v \in (ImT^*)^\bot }[/math] ולכן [math]\displaystyle{ kerT = (ImT^*)^\bot }[/math]. בצורה דומה [math]\displaystyle{ kerT^*=(ImT)^\bot }[/math]. אבל הגרעינים שווים ולכן [math]\displaystyle{ (ImT)^\bot=(ImT^*)^\bot }[/math] ומזה נובע שהם שווים (כי המרחב המאונך הינו יחיד, והמאונך של המאונך הינו המרחב עצמו).