88-611 מבוא לאנליזה 1/סילבוס: הבדלים בין גרסאות בדף

מתוך Math-Wiki
אין תקציר עריכה
אין תקציר עריכה
שורה 22: שורה 22:


*נוסחאות גזירה.
*נוסחאות גזירה.
*משפטי פרמה, רול, לגראנז' ולגראנז' המוכלל (קושי)


*כלל לופיטל וחישוב גבולות
*כלל לופיטל וחישוב גבולות

גרסה מ־15:59, 27 בדצמבר 2015

ברשימה זו מופיע החומר המתוכנן לכל מפגש.

רשימה זו הינה זמנית ותשתנה במהלך הקורס.

  • היכרות עם קבוצות המספרים, הגדרת פעולות החזקה והלוגריתם.
  • גבול של סדרה, ערך מוחלט ואי שיוויונים.
  • אריתמטיקה של גבולות של סדרות
  • סדרות מונוטוניות, המספר e, סדרות הנתונות על ידי נוסחאת נסיגה (אינדוקציה).
  • מבוא לטורים
  • גבול של פונקציה (לפי קושי ולפי היינה), גבולות חד צדדיים, קטעים ממשיים.
  • טריגונומטריה, הגבול sin(x)/x.
  • רציפות, משפט ערך הביניים, ויירשטארס
  • גזירות, חישוב הנגזרות של הפונקציות אלמנטריות לפי ההגדרה.
  • נוסחאות גזירה.
  • משפטי פרמה, רול, לגראנז' ולגראנז' המוכלל (קושי)
  • כלל לופיטל וחישוב גבולות


סילבוס (עוד יותר זמני) לקורס מבוא לאנליזה 2:

  • חקירת פונקציות (תחומי עלייה ירידה, נק' קיצון, תחומי קמירות קעירות, נק' פיתול, אסימפטוטות)
  • חקירת פונקציות (המשך)
  • מבוא לאינטגרלים
  • אינטגרלים לא מסוימיםאינטגרציה בחלקים
  • אינטגרלים לא מסוימיםשיטת ההצבה
  • אינטגרלים לא מסוימיםפונקציה רציונאלית
  • אינטגרלים מסוימים.
  • טורי טיילור וחישוב ערכי פונקציות לפי רמת דיוק
  • המשך טורי טיילור.