שיחה:88-132 סמסטר א' תשעא: הבדלים בין גרסאות בדף
(←תשובה) |
|||
שורה 37: | שורה 37: | ||
===תשובה=== | ===תשובה=== | ||
בסעיף a כלומר? כן שם אפשר להניח את זה, ואז להסביר למה מותר להניח את זה במקרה שלנו. --[[משתמש:ארז שיינר|ארז שיינר]] 12:56, 10 בנובמבר 2010 (IST) |
גרסה מ־10:56, 10 בנובמבר 2010
הוספת שאלה חדשה
הוסף שאלה חדשה (רשום כותרת לשאלה, רשום את תוכן השאלה ולחץ על שמירה למטה מימין לסיום).
-עזרה על עיצוב הטקסט וכתיב מתמטי תוכלו למצוא כאן
אם אתם רוצים לשאול שאלה עליכם ליצור חשבון משתמש באתר.
ארכיון
שאלות
שאלה כללית
אם לסדרה יש גבול חלקי אחד ויחיד ז"א שהסידרה מתכנסת לגבול זה?
- בשאלה 2.b בתרגיל 4 אתם נדרשים להוכיח את זה --ארז שיינר 21:30, 8 בנובמבר 2010 (IST)
- בהוכחה שלי לשאלה זאת הנחתי כמו ברמז שהגבול הוא משהו אחר ואז הגעתי לסתירה. אבל מה אם הגבול בכלל לא קיים?
- מצב כזה יכול בכלל להתרחש?
- אם כך, לא הוכחת את מה שהיה צריך להוכיח. כאשר רשום להוכיח שהגבול הינו L הכוונה שצריך להראות שיש גבול והוא L. מה שרשום שם אומר במפורש שאם הגבול החלקי העליון והתחתון שווים (זה בפרט המקרה של קיום גבול חלקי יחיד) אזי הסדרה מתכנסת לגבול הזה. --ארז שיינר 00:18, 9 בנובמבר 2010 (IST)
תיקון שאלה 4 תרגיל 5
על איזה תיקון בשאלה 4 תרגיל 5 אתה מדבר? בתרגיל עצמו לא מופיע תיקון...
- לא רשום תיקון הוא פשוט מתוקן. היה בצד הימני n+1 במקום n-1, זה הכל. --ארז שיינר 14:46, 9 בנובמבר 2010 (IST)
בקשה לפתרון הבוחן
שלום רב,
אמנם הבוחן של הקבוצה של פרופסור זלצמן הוא ב-22/11 אבל לקבוצות של התיכוניסטים (ד"ר הורוביץ וד"ר שיין) יש בוחן ב-14/11. אני מאמין שאני מדבר בשמם של כל התיכוניסטים בבקשה להעלות את הפתרון לאתר עוד לפני הבוחן שלנו, זה מאוד יעזור לנו. תודה בכל מקרה! גל.
- רוב השאלות ממילא הם משיעורי הבית. חוצמזה, זה בוחן ממש קל אני בטוח שתתמודדו. אם יש שאלה ספציפית מוזמנים לשאול. --ארז שיינר 22:16, 9 בנובמבר 2010 (IST)
- בסדר גמור. לי יש בעיה בקטע של הגדרת שלילת הגבול, אם תוכל לצטט כאן (שוב) את ההגדרה אודה לך מאוד.
- כפי שההפך מהמשפט לכל סיר יש מכסה שמתאים לו הוא קיים סיר שכל המכסים אינם מתאימים לו, L אינו גבול של הסדרה a_n אם קיים [math]\displaystyle{ \epsilon\gt 0 }[/math] כך שלכל [math]\displaystyle{ N\in\mathbb{N} }[/math] קיים [math]\displaystyle{ n\gt N }[/math] כך שמתקיים [math]\displaystyle{ |a_n-L|\geq\epsilon }[/math]. --ארז שיינר 22:30, 9 בנובמבר 2010 (IST)
- בסדר גמור. לי יש בעיה בקטע של הגדרת שלילת הגבול, אם תוכל לצטט כאן (שוב) את ההגדרה אודה לך מאוד.
תרגיל 4 שאלה 2
בשלב מסוים בהוכחה, הגעתי לשלב שבו צריך להוכיח שהגבול של 1 חלקי אינפימום של an שווה לאחד חלקי הגבול של (..). זה נכון וקל להוכיח (הוכחנו בהרצאה), חוץ מכשהאינפימום של an שווה 0, ואז זה לא נכון. מה לעשות- מותר להניח שהאינפימום של an לא שווה 0?
תשובה
בסעיף a כלומר? כן שם אפשר להניח את זה, ואז להסביר למה מותר להניח את זה במקרה שלנו. --ארז שיינר 12:56, 10 בנובמבר 2010 (IST)