חתכי דדקינד: הבדלים בין גרסאות בדף
(←הקדמה) |
(←הקדמה) |
||
שורה 1: | שורה 1: | ||
==הקדמה== | ==הקדמה== | ||
*אנחנו מעוניינים שבמערכת המספרים שלנו יהיה פתרון למשוואה <math>x^2=2</math>. | *אנחנו מעוניינים שבמערכת המספרים שלנו יהיה פתרון למשוואה <math>x^2=2</math> (שורש שתיים). | ||
*הרי אחרת, מה המרחק מהנקודה <math>(1,1)</math> לראשית הצירים <math>(0,0)</math>? | *הרי אחרת, מה המרחק מהנקודה <math>(1,1)</math> לראשית הצירים <math>(0,0)</math>? | ||
שורה 18: | שורה 18: | ||
(נבנה באמצעות [https://www.geogebra.org/graphing גאוגברה].) | (נבנה באמצעות [https://www.geogebra.org/graphing גאוגברה].) | ||
*ובכן, ניתן לומר שציר המספרים מתחלק לשניים - לפני שורש שתיים ואחרי שורש שתיים. | |||
*כלומר, אולי אנחנו יכולים לייצג את נקודת החיתוך על ידי אוסף הנקודות שקטנות ממנה <math>\left\{x\in\mathbb{Q}| x<0 \vee x^2 <2\right\}</math>, זו הקרן באיור. | |||
*הרעיון הזה של חיתוך ציר הריציונאליים סביב נקודה בלתי קיימת הוליד את '''חתכי דדקינד'''. | |||
==חתכי דדקינד== | |||
*'''הגדרה''': חתך דדקינד הוא קבוצה <math>A\subseteq\mathbb{Q}</math> המקיימת: | |||
**<math>A\neq\emptyset</math> | |||
**<math>A</math> חסומה מלעיל. | |||
**לכל <math>m\in\mathbb{Q}</math> מתקיים כי <math>m\notin A</math> אם ורק אם <math>m</math> חסם מלעיל של <math>A</math> | |||
*הערות ותזכורות: | |||
**חסם מלעיל של קבוצה הוא מספר שגדול יותר מכל איברי הקבוצה. | |||
**בחתך דדקינד אין מספר גדול ביותר, אחרת זה היה חסם מלעיל ששיך לקבוצה. | |||
**אם מספר שייך לחתך, בוודאי כל מספר נמוך ממנו שייך לחתך הרי לא ייתכן שמספר נמוך ממנו הוא חסם מלעיל. | |||
*הקרן באיור לעיל היא חתך דדקינד שתפקידו להגדיר את שורש שתיים. | |||
*כיצד ניתן להתייחס לקבוצות כאלה בתור מספרים? | |||
*עלינו להגיד פעולות בין חתכי דדקינד ולהוכיח שמדובר ב[[שדה]]. | |||
*כאשר נגדיר את הפעולות, נזכור שמטרתינו היא להגדיר את הנקודות "החסרות" על הציר. |
גרסה מ־17:27, 4 בספטמבר 2020
הקדמה
- אנחנו מעוניינים שבמערכת המספרים שלנו יהיה פתרון למשוואה [math]\displaystyle{ x^2=2 }[/math] (שורש שתיים).
- הרי אחרת, מה המרחק מהנקודה [math]\displaystyle{ (1,1) }[/math] לראשית הצירים [math]\displaystyle{ (0,0) }[/math]?
- האם ייתכן שהפרבולה [math]\displaystyle{ y=x^2-2 }[/math] עולה מהנקודה [math]\displaystyle{ (0,-2) }[/math] אל הנקודה [math]\displaystyle{ (2,2) }[/math] בלי לחתוך את ציר האיקס?
- כיוון שאין פתרון למשוואה זו בשדה הרציונאליים, אנחנו רוצים לבנות את שדה הממשיים.
- כיצד ניתן לתאר את נקודת החיתוך החיובית של הפרבולה [math]\displaystyle{ y=x^2-2 }[/math] עם ציר האיקס באמצעות המספרים הרציונאליים אם כך?
(נבנה באמצעות גאוגברה.)
- ובכן, ניתן לומר שציר המספרים מתחלק לשניים - לפני שורש שתיים ואחרי שורש שתיים.
- כלומר, אולי אנחנו יכולים לייצג את נקודת החיתוך על ידי אוסף הנקודות שקטנות ממנה [math]\displaystyle{ \left\{x\in\mathbb{Q}| x\lt 0 \vee x^2 \lt 2\right\} }[/math], זו הקרן באיור.
- הרעיון הזה של חיתוך ציר הריציונאליים סביב נקודה בלתי קיימת הוליד את חתכי דדקינד.
חתכי דדקינד
- הגדרה: חתך דדקינד הוא קבוצה [math]\displaystyle{ A\subseteq\mathbb{Q} }[/math] המקיימת:
- [math]\displaystyle{ A\neq\emptyset }[/math]
- [math]\displaystyle{ A }[/math] חסומה מלעיל.
- לכל [math]\displaystyle{ m\in\mathbb{Q} }[/math] מתקיים כי [math]\displaystyle{ m\notin A }[/math] אם ורק אם [math]\displaystyle{ m }[/math] חסם מלעיל של [math]\displaystyle{ A }[/math]
- הערות ותזכורות:
- חסם מלעיל של קבוצה הוא מספר שגדול יותר מכל איברי הקבוצה.
- בחתך דדקינד אין מספר גדול ביותר, אחרת זה היה חסם מלעיל ששיך לקבוצה.
- אם מספר שייך לחתך, בוודאי כל מספר נמוך ממנו שייך לחתך הרי לא ייתכן שמספר נמוך ממנו הוא חסם מלעיל.
- הקרן באיור לעיל היא חתך דדקינד שתפקידו להגדיר את שורש שתיים.
- כיצד ניתן להתייחס לקבוצות כאלה בתור מספרים?
- עלינו להגיד פעולות בין חתכי דדקינד ולהוכיח שמדובר בשדה.
- כאשר נגדיר את הפעולות, נזכור שמטרתינו היא להגדיר את הנקודות "החסרות" על הציר.