88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/6
קואורדינטות
משפט: יהא V מ"ו מעל שדה F, יהי [math]\displaystyle{ B=\{v_1,...,v_n\} }[/math] בסיס ל-V ויהי [math]\displaystyle{ v\in V }[/math] וקטור. אזי ל-v יש הצגה יחידה כצירוף לינארי לפי הבסיס B. כלומר, אם מתקיים [math]\displaystyle{ v=a_1v_1+...+a_nv_n=b_1v_1+...+b_nv_n }[/math] אזי בהכרח [math]\displaystyle{ \forall i:a_i=b_i }[/math]. (קל להוכיח את זה על ידי חיסור הצד הימני של המשוואה מהצד השמאלי, מקבלים צירוף לינארי שמתאפס עם מקדמים [math]\displaystyle{ a_i-b_i }[/math].)
הגדרה: יהיו V,B וv כמו במשפט. אזי וקטור הקואורדינטות של v לפי בסיס B, מסומן [math]\displaystyle{ [v]_B\in\mathbb{F}^n }[/math] מוגדר להיות [math]\displaystyle{ [v]_B=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix} }[/math] כאשר [math]\displaystyle{ v=a_1v_1+...+a_nv_n }[/math] ההצגה הלינארית היחידה הקיימת לפי המשפט.
חשוב לזכור [math]\displaystyle{ [v]_B=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix} }[/math] אם"ם [math]\displaystyle{ v=a_1v_1+...+a_nv_n }[/math]
תרגיל קל אבל חשוב הוא להראות שלכל בסיס B מתקיים ש [math]\displaystyle{ v=0 }[/math] אם"ם [math]\displaystyle{ [v]_B=0 }[/math].
הערה: במרחבים הוקטוריים שאנו נעבוד איתם יש בסיסים סטנדרטיים. הייחוד של הבסיסים הסטנדרטיים הוא שקל מאד לחשב קואורדינטות לפיהם. נסתכל במרחבים וקטורים ובבסיסים הסטנדרטיים שלהם:
מרחב וקטורי | בסיס סטנדרטי |
[math]\displaystyle{ \mathbb{F}^n }[/math] | [math]\displaystyle{ (1,0,...,0),(0,1,0,...,0),...,(0,...,0,1) }[/math] |
[math]\displaystyle{ \mathbb{F}^{m\times n} }[/math] | [math]\displaystyle{ \begin{pmatrix}1 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0\end{pmatrix}, \begin{pmatrix}0 & 1 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0\end{pmatrix},..., \begin{pmatrix}0 & \cdots & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0\end{pmatrix},..., \begin{pmatrix}0 & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \end{pmatrix} }[/math] |
[math]\displaystyle{ \mathbb{F}_n[x] }[/math] | [math]\displaystyle{ 1,x,x^2,...,x^n }[/math] |
דוגמא.
חשב את הקואורדינטות של הוקטור [math]\displaystyle{ v=1+2x-x^2 }[/math] לפי הבסיס הסטנדרטי S של [math]\displaystyle{ \mathbb{R}_3[x] }[/math]. למעשה הפולינום כמעט מוצג כצירוף לינארי של איברי הבסיס:
[math]\displaystyle{ v=a_1v_1+a_2v_2+a_3v_3+a_4v_4 = 1\cdot 1 + 2\cdot x + (-1)\cdot x^2 + 0\cdot x^3 }[/math].
לפיכך [math]\displaystyle{ [v]_S=(1,2,-1,0) }[/math].
דוגמא.
חשב את הקואורדינטות של הוקטור [math]\displaystyle{ (a,b,c) }[/math] לפי הבסיס הסטנדרטי S של [math]\displaystyle{ \mathbb{F}^n }[/math]. קל לראות ש [math]\displaystyle{ [v]_S = (a,b,c) }[/math].
תרגיל
יהא V מ"ו ויהי B בסיס לו. יהיו [math]\displaystyle{ u_1,...,u_k\in V }[/math] וקטורים כלשהם. הוכח:
- [math]\displaystyle{ u_1,...,u_k }[/math] בת"ל אם"ם [math]\displaystyle{ [u_1]_B,...,[u_k]_B }[/math] בת"ל
- [math]\displaystyle{ w\in span\{u_1,...,u_k\} }[/math] אם"ם [math]\displaystyle{ w\in span\{[u_1]_B,...,[u_k]_B\} }[/math]
נוכיח תרגיל זה בהמשך, לאחר שנלמד על העתקות לינאריות. כעת נניח שהוא נכון ונתרכז בכלי החישובי המשמעותי שקיבלנו; כל בדיקה/חישוב של תלות לינארית או פרישה בכל מרחב וקטורי (מטריצות, פולינומים, פונקציות) יכול בעצם להעשות במרחב הוקטורי המוכר והנוח [math]\displaystyle{ \mathbb{F}^n }[/math].
דוגמא.
האם הפולינומים [math]\displaystyle{ v_1=1+x^2,v_2=1-x,v_3=x+x^2 }[/math] תלויים לינארית?
דבר ראשון, נעבור למרחב הקואורדינטות. מכיוון שבחירת הבסיס היא לשיקולנו, נבחר את הבסיס הסטנדרטי S של הפולינומים איתו קל לעבוד. מתקיים ש [math]\displaystyle{ [v_1]_S=(1,0,1),[v_2]_S=(1,-1,0),[v_3]=(0,1,1) }[/math]
הוכחנו בשיעור שעבר שוקטורים "רגילים" ת"ל אם"ם המטריצה שהם השורות שלה אינה הפיכה אם"ם הצורה המדורגת של המטריצה מכילה שורת אפסים. לכן, נשים את וקטורי הקואורדינטות בשורות מטריצה ונדרג.
[math]\displaystyle{ \begin{pmatrix}1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 1\end{pmatrix} }[/math]
[math]\displaystyle{ R_3-R_1,R_3+R_2 }[/math]
[math]\displaystyle{ \begin{pmatrix}1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 0\end{pmatrix} }[/math]
לכן וקטורי הקואורדינטות תלויים לינארית ולכן הפולינומים עצמם תלויים לינארית. נסכם את התהליך:
אלגוריתם לבדיקת תלות לינארית בין וקטורים
- הפוך את הוקטורים לוקטורי קואורדינטות לפי הבסיס הסטנדרטי המתאים
- שים את וקטורי הקואורדינטות בשורות מטריצה A
- הבא את המטריצה לצורה מדורגת
- אם באיזה שלב קיבלת שורת אפסים סימן שהוקטורים תלויים לינארית
- אם הגעת לצורה מדורגת ללא שורת אפסים סימן שהוקטורים בלתי תלויים לינארית