משפט פרמה (אינפי)
הגדרת נקודת קיצון מקומית
תהי [math]\displaystyle{ f }[/math] מוגדרת בסביבת הנקודה [math]\displaystyle{ x_0 }[/math] כך שלכל x בסביבה מתקיים:
- [math]\displaystyle{ \forall x\in(x_0-\epsilon,x_0+\epsilon):f(x)\leq f(x_0) }[/math] (נקודת מקסימום מקומי)
או
- [math]\displaystyle{ \forall x\in(x_0-\epsilon,x_0+\epsilon):f(x)\geq f(x_0) }[/math] (נקודת מינימום מקומי)
אזי [math]\displaystyle{ x_0 }[/math] הינה נקודת קיצון מקומית של [math]\displaystyle{ f }[/math].
משפט פרמה
תהי [math]\displaystyle{ x_0 }[/math] נקודת קיצון מקומית של פונקציה [math]\displaystyle{ f }[/math]. אזי אם [math]\displaystyle{ f }[/math] גזירה ב[math]\displaystyle{ x_0 }[/math] מתקיים:
- [math]\displaystyle{ f'(x_0)=0 }[/math]
הוכחה
נניח כי f גזירה בנקודת מקסימום מקומי [math]\displaystyle{ x_0 }[/math] (ההוכחה עבור מינימום דומה) . אזי לפי הגדרת הנגזרת הגבול הבא קיים:
- [math]\displaystyle{ \lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=L }[/math]
לפי משפט, כיוון שהגבול קיים, הגבולות החד צדדיים ושווים.
לפי הנתון, קיימת סביבה ימנית של [math]\displaystyle{ x_0 }[/math] בה מתקיים [math]\displaystyle{ f(x)-f(x_0)\leq 0 }[/math], וכיוון שזו סביבה ימנית מתקיים בה גם [math]\displaystyle{ x-x_0\gt 0 }[/math].
לכן ביחד, מתקיים כי
- [math]\displaystyle{ L=\lim_{x\rightarrow x_0^+}\frac{f(x)-f(x_0)}{x-x_0}\leq 0 }[/math]
באופן דומה, קיימת סביבה שמאלית של [math]\displaystyle{ x_0 }[/math] בה מתקיים [math]\displaystyle{ f(x)-f(x_0)\leq 0 }[/math], וכיוון שזו סביבה שמאלית מתקיים בה גם [math]\displaystyle{ x-x_0\lt 0 }[/math].
לכן ביחד, מתקיים כי
- [math]\displaystyle{ L=\lim_{x\rightarrow x_0^-}\frac{f(x)-f(x_0)}{x-x_0}\geq 0 }[/math]
סה"כ [math]\displaystyle{ L=0 }[/math] כפי שרצינו.