88-376 שיטות נומריות
תוכן עניינים |
---|
סמסטר א' תשע"ז.
הנחיות כלליות
- בעמוד זה יעלו תרגילי ההגשה. הגשה למתרגל בכיתה. חובת הגשה - 80% מהתרגילים.
- באמצע הסמסטר יהיה בוחן. מבנה הבוחן: בחירה של 2 שאלות מתוך 3. אחת השאלות תהיה מתרגילי הההעשרה שיעלו באתר של פרופ' קרסנוב.
- משקל התרגילים והבוחן בציון הסופי - 15%.
- גישה למטלב מרחוק: מטלב
סגל הקורס
מרצה: פרופ' יעקב קרסנוב.
אתר המרצה: http://u.math.biu.ac.il/~krasnov/376/
מתרגל: עידן אלתר
תרגילי בית
תרגיל 1 - יש כמה שאלות שעדיין לא למדנו איך לפתור.
חומר עזר משנים קודמות
מערכי התרגול באדיבותם של הילה בכר, גרישה אושרוביץ' ומרדכי יעקב.
אין הכותבים אחראים על תקינותם של התרגולים במידה ונפלו בהם טעויות.
- [תרגול 1] - אנליזת שגיאות, ייצוג מספרים במחשב, סוגי שגיאות
- [תרגול 2] - ניתוח שגיאות (מספר מצב)
- [תרגול 3 א'] - סוגי שגיאות, מציאת שורשים
- [תרגול 3 ב'] - סוגי שגיאות, מציאת שורשים
- [תרגול 4] - סדר התכנסות, קבוע התכנסות, מציאת שורשים
- [תרגול 5] - מציאת שורשים, אלגברה לינארית
- [תרגול 6 (של אורן)] - אלגברה לינארית
- [תרגול 6 (מערך)] - אלגברה לינארית
- [תרגול 7] - אלגברה לינארית, שיטות איטרטיביות למציאת ווקטור פתרונות
- [תרגול 7 (מערך אחר)] - אלגברה לינארית, פתרון מערכת משוואות
- [תרגול 8] - אלגברה לינארית, שיטות איטרטיביות למציאת ווקטור פתרונות
- [תרגול 9] - אלגברה לינארית, מציאת ע"ע, היעקוביאן
- [תרגול 9 (של מרדכי)] - אלגברה לינארית, מציאת ע"ע, היעקוביאן, אינטרפולציה
- [ תרגול 10 ] - שיטות אינטרפולציה
- [ תרגול 10 (מערך נוסף) ] - שיטות אינטרפולציה, שיטת ניוטון, משפט השארית.
- [ תרגול 11 ] - שגיאת אינטרפולציה, פולינום צ'בישב
- [ תרגול 12 ] - קירובים, שיפור פולינומים אורתוגונליים, אינטגרציה נומרית
- [ תרגול 12 (של מרדכי) ] - שיטות אינטגרציה נומריות
התרגולים הבאים הינם התרגולים של מרדכי יעקב בקורס זה בסמסטר קיץ , 2016. אין המתרגל או הכותב אחראים על תקינותם של התרגולים במידה וקיימים בהם טעויות.
תרגול 1 - אנליזה של שגיאות.
תרגול 2 - שגיאת קירוב,שגיאה מתפשטת, מספר מצב.
תרגול 3 - שגיאת התבטלות, פתרון משוואות לא לינאריות - שיטת החצייה וסדר ושיעור התכנסות.
תרגול 4 - שיטת המיקום השגוי (Regula-Falsi), שיטת נק' שבת, שיטת ניוטון-ראפסון.
תרגול 5 - שיטת ניוטון-ראפסון(רגילה+משופרת), שיטת מולר.
תרגול 6 - אלגברה לינארית - partial pivoting, פירוק LU, פירוק PALU ומספר מצב של מטריצה.
תרגול 7 - פירוק cholesky, שיטות איטרטיביות להתכנסות מערכת משוואות.
תרגול 8 - שיטות איטרטיביות להתכנסות מערכת משוואות(המשך), פירוק QR וגם power method.
תרגול 9 - power method(המשך), inverse p.m וגם shifted p.m, שיטת ניוטון רב מימדית, אינטרפולציה - אינטרפולציה פולינומית,לגרנז'.
תרגול 10 - אינטרפלוציית לגרנז, ניטון(הפרשים מחולקים), משפט השארית.
תרגול 11 - ספליין קובי, ספליין קובי טבעי, ריבועים מינימליים.
תרגול 12 - רגרסיה לינארית (מקרה בדיד+מקרה רציף), פולינומי לז'נדר וצ'בישב.
תרגול 13 - נגזרת נומרית - אקסטרפולצייה של ריצ'ארדסון, אינטגרציה נומרית - שיטות ניטון-קוטס - כלל הטרפז(פשוט+מוכלל), כלל סימפסון(פשוט+מוכלל) .
תרגול 14 - אינטגרציה נומרית - שיטות ניטון-קוטס - כלל הטרפז וכלל סימפסון, תרבוע גאוס - שיטת גאוס לז'נדר, שיטת גאוס צ'בישב.
תרגול 15(השלמה לקראת המבחן) - לקט של תרגילים שונים.
חומרי עזר כללים
http://u.cs.biu.ac.il/~zarosih/68/NumMethods.html
http://u.math.biu.ac.il/~schiff/Teaching/376/376.html
http://u.math.biu.ac.il/~itschar/numeric.html
http://u.math.biu.ac.il/~krasnov/376/
http://u.cs.biu.ac.il/~kurzbed/treismr/expired/treismr/WWW/numcomp.html
http://u.cs.biu.ac.il/~kurzbed/treismr/expired/treismr/WWW/nummet.html