התכנסות במ"ש
הגדרה
עד כה הגדרנו התכנסות נקודתית של סדרת וטור פונקציות לפונקצית הגבול. ניתן לנסח התכנסות סדרת פונקציות נקודתית בכלל הלוגי הבא:
- [math]\displaystyle{ \forall x_0\in D\forall \epsilon \gt 0 \exists N_{x_0,\epsilon}\forall n\gt N_{x_0,\epsilon}:|f_n(x_0)-f(x_0)|\lt \epsilon }[/math]
כאשר D הוא תחום ההגדרה של פונקצית הגבול.
אנו אומרים כי סדרת הפונקציות מתכנסת במידה שווה (במ"ש) בתחום [math]\displaystyle{ A\subseteq D }[/math] אם קיים [math]\displaystyle{ N_\epsilon }[/math] המתאים לכל [math]\displaystyle{ x\in A }[/math]. כלומר מתקיים התנאי הלוגי הבא:
- [math]\displaystyle{ \forall \epsilon \gt 0\exists N_\epsilon\forall n\gt N_\epsilon \forall x\in A:|f_n(x)-f(x)|\lt \epsilon }[/math]
ניתן גם לומר שסדרת פונקציות מתכנסת במידה שווה אם לכל אפסילון קיים מקום בסדרה שהחל ממנו והלאה כל הפונקציות נמצאות בין פונקצית הגבול פחות אפסילון לפונקצית הגבול ועוד אפסילון.