התכנסות במ"ש

מתוך Math-Wiki
גרסה מ־11:44, 2 ביוני 2012 מאת ארז שיינר (שיחה | תרומות) (יצירת דף עם התוכן "==הגדרה== עד כה הגדרנו התכנסות נקודתית של סדרת וטור פונקציות לפונקצית הגבו...")
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

הגדרה

עד כה הגדרנו התכנסות נקודתית של סדרת וטור פונקציות לפונקצית הגבול. ניתן לנסח התכנסות סדרת פונקציות נקודתית בכלל הלוגי הבא:

[math]\displaystyle{ \forall x_0\in D\forall \epsilon \gt 0 \exists N_{x_0,\epsilon}\forall n\gt N_{x_0,\epsilon}:|f_n(x_0)-f(x_0)|\lt \epsilon }[/math]

כאשר D הוא תחום ההגדרה של פונקצית הגבול.


אנו אומרים כי סדרת הפונקציות מתכנסת במידה שווה (במ"ש) בתחום [math]\displaystyle{ A\subseteq D }[/math] אם קיים [math]\displaystyle{ N_\epsilon }[/math] המתאים לכל [math]\displaystyle{ x\in A }[/math]. כלומר מתקיים התנאי הלוגי הבא:

[math]\displaystyle{ \forall \epsilon \gt 0\exists N_\epsilon\forall n\gt N_\epsilon \forall x\in A:|f_n(x)-f(x)|\lt \epsilon }[/math]


ניתן גם לומר שסדרת פונקציות מתכנסת במידה שווה אם לכל אפסילון קיים מקום בסדרה שהחל ממנו והלאה כל הפונקציות נמצאות בין פונקצית הגבול פחות אפסילון לפונקצית הגבול ועוד אפסילון.


תנאי שקול