המספר e

מתוך Math-Wiki

חזרה לסדרות

המספר e

לסדרה [math]\displaystyle{ a_n=\left(1+\dfrac1n\right)^n }[/math] יש גבול ממשי (כפי שמוכח בהמשך). אנו מגדירים את המספר e להיות גבול הסדרה הזו.

[math]\displaystyle{ e:=\lim\limits_{n\to\infty}\left(1+\dfrac1n\right)^n }[/math]

משפט. תהי [math]\displaystyle{ a_n }[/math] סדרה כלשהי המתכנסת במובן הרחב לאינסוף, אזי [math]\displaystyle{ e=\lim\limits_{n\to\infty}\left(1+\dfrac1{a_n}\right)^{a_n} }[/math]

משפט. תהי [math]\displaystyle{ a_n }[/math] סדרה כלשהי המתכנסת במובן הרחב לאינסוף, ותהי [math]\displaystyle{ b_n }[/math] סדרה המתכנסת (במובן הצר, או במובן הרחב) לגבול [math]\displaystyle{ L }[/math] . אזי [math]\displaystyle{ e^L=\lim\limits_{n\to\infty}\left(1+\dfrac1{a_n}\right)^{a_n\cdot b_n} }[/math]


תרגיל.

חשב את גבול הסדרה [math]\displaystyle{ a_n=\left(1-\dfrac1n\right)^n }[/math]


פתרון

נפתח את הסדרה על מנת לקבל ביטוי מהצורה של המשפט למעלה.

[math]\displaystyle{ \begin{align}\left(1-\frac1n\right)^n&=\left(\frac{n-1}{n}\right)^n=\left(\left(\frac{n}{n-1}\right)^{-1}\right)^n\\ &=\left(1+\frac1{n-1}\right)^{-n}=\left(1+\frac1{n-1}\right)^{(n-1)\frac{-n}{n-1}}\end{align} }[/math]


כיון ש- [math]\displaystyle{ \dfrac{-n}{n-1}\to-1 }[/math] אנו מקבלים כי

[math]\displaystyle{ \lim\limits_{n\to\infty}\left(1-\dfrac1n\right)^n=e^{-1}=\frac1e }[/math]

תכונות

הסדרה [math]\displaystyle{ \left(1+\dfrac1n\right)^n }[/math] מתכנסת לגבול ממשי, וכמו כן לכל מספר טבעי [math]\displaystyle{ n }[/math] מתקיים כי:

[math]\displaystyle{ \left(1+\dfrac1n\right)^n\lt e\lt \left(1+\dfrac1n\right)^{n+1} }[/math]
הוכחה

נוכיח כי הסדרה השמאלית מונוטונית עולה, ונוכיח כי הסדרה הימנית מונוטונית יורדת.

מובן מאליו כי

[math]\displaystyle{ \left(1+\dfrac1n\right)^n\lt \left(1+\dfrac1n\right)^{n+1} }[/math]

אם כך, שתי הסדרות מונוטוניות וחסומות ולכן מתכנסות.

כמו כן:

[math]\displaystyle{ \left(1+\dfrac1n\right)^{n+1}=\left(1+\dfrac1n\right)^n\cdot\left(1+\dfrac1n\right)\to e\cdot1 }[/math]

וביחד אנו מקבלים את מה שרצינו להוכיח, כיוון שסדרה מונוטונית עולה תמיד קטנה מגבולה, וסדרה מונוטונית יורדת גדולה מגבולה.


נוכיח כי הסדרה הימנית מונוטונית יורדת

נסמן

[math]\displaystyle{ a_n=\left(1+\dfrac1n\right)^{n+1} }[/math]

רוצים להוכיח

[math]\displaystyle{ a_{n+1}\lt a_n }[/math]

כלומר

[math]\displaystyle{ \left(1+\dfrac1{n+1}\right)^{n+2}\lt \left(1+\dfrac1n\right)^{n+1} }[/math]

נפתח את אי-השוויון:

[math]\displaystyle{ \left(1+\dfrac1{n+1}\right)\left(1+\dfrac1{n+1}\right)^{n+1}\lt \left(1+\dfrac1n\right)^{n+1} }[/math]
[math]\displaystyle{ \left(1+\dfrac1{n+1}\right)\lt \left(\frac{1+\frac1n}{1+\frac1{n+1}}\right)^{n+1}=\left(\dfrac{(n+1)^2}{n(n+2)}\right)^{n+1}=\left(1+\dfrac1{n(n+2)}\right)^{n+1} }[/math]


כעת נשים לב כי לפי פיתוח הבינום של ניוטון מתקיים:

[math]\displaystyle{ \left(1+\dfrac1{n(n+2)}\right)^{n+1}=1+\dfrac{n+1}{n(n+2)}+\cdots\gt 1+\dfrac{n+1}{n(n+2)} }[/math]

(שימו לב: זה בעצם אי שיוויון ברנולי [math]\displaystyle{ \left(1+\epsilon\right)^n\geq 1+n\epsilon }[/math])

לכן מספיק להוכיח כי

[math]\displaystyle{ 1+\dfrac1{n+1}\lt 1+\dfrac{n+1}{n(n+2)} }[/math]

אבל קל לראות כי אי שיוויון זה מתקיים תמיד:

[math]\displaystyle{ 1\lt \dfrac{(n+1)^2}{n(n+2)}=\dfrac{n^2+2n+1}{n^2+2n} }[/math]


נוכיח כי הסדרה השמאלית מונוטונית עולה

נסמן

[math]\displaystyle{ a_n=\left(1+\frac{1}{n}\right)^n }[/math]

רוצים להוכיח

[math]\displaystyle{ a_{n+1}\gt a_n }[/math]

כלומר רוצים להוכיח כי

[math]\displaystyle{ \frac{a_{n+1}}{a_n}\gt 1 }[/math]

צריך להוכיח

[math]\displaystyle{ \frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^n}\gt 1 }[/math]

כעת

[math]\displaystyle{ \frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^n}= \left(1+\frac{1}{n+1}\right)\left(\frac{1+\frac{1}{n+1}}{1+\frac{1}{n}}\right)^n= }[/math]
[math]\displaystyle{ =\left(1+\frac{1}{n+1}\right)\left(\frac{\frac{n+2}{n+1}}{\frac{n+1}{n}}\right)^n= \left(1+\frac{1}{n+1}\right)\left(\frac{n(n+2)}{(n+1)^2}\right)^n= }[/math]
[math]\displaystyle{ =\left(1+\frac{1}{n+1}\right)\left(1-\frac{1}{(n+1)^2}\right)^n\geq \left(1+\frac{1}{n+1}\right)\left(1-\frac{n}{(n+1)^2}\right) }[/math]


שימו לב, שוב השתמשנו באי שיוויון ברנולי, לכל [math]\displaystyle{ \epsilon\gt -1 }[/math] ולכל n מתקיים [math]\displaystyle{ \left(1+\epsilon\right)^n\geq 1+n\epsilon }[/math]


ולבסוף

[math]\displaystyle{ \left(1+\frac{1}{n+1}\right)\left(1-\frac{n}{(n+1)^2}\right)= \left(\frac{n+2}{n+1}\right)\left(\frac{(n+1)^2-n}{(n+1)^2}\right)= }[/math]
[math]\displaystyle{ =\left(\frac{n^3+3n^2+3n+2}{n^3+3n^2+3n+1}\right)\gt 1 }[/math]

דוגמאות

תרגיל.

מצא את גבול הסדרה [math]\displaystyle{ \lim\limits_{n\to\infty}\dfrac{n}{\sqrt[n]{n!}} }[/math]

[math]\displaystyle{ \dfrac{n}{\sqrt[n]{n!}}=\sqrt[n]{\dfrac{n^n}{n!}} }[/math]

לכן לפי משפט אם [math]\displaystyle{ \dfrac{a_{n+1}}{a_n}\to L }[/math] אזי גם [math]\displaystyle{ \sqrt[n]{a_n}\to L }[/math] .

לכן הגבול הנו:

[math]\displaystyle{ \lim\limits_{n\to\infty}\dfrac{(n+1)^{n+1}n!}{n^n(n+1)!}=\lim\limits_{n\to\infty}\dfrac{(n+1)^{n}}{n^n}=\lim\limits_{n\to\infty}\left(\frac{n+1}{n}\right)^n=\lim\limits_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e }[/math]