חדוא 1 - ארז שיינר
מבחנים ופתרונות
סרטוני ותקציר ההרצאות
פרק 1 - מספרים וחסמים
קבוצות מספרים
- הטבעיים
- השלמים
- הרציונאליים
- הממשיים
, כל השברים העשרוניים כולל האינסופיים
- העשרה: בנייה של שדה הממשיים באמצעות חתכי דדקינד
- לא קיים
כך ש . - במילים פשוטות,
אינו רציונאלי (בהמשך נוכיח שיש מספר ממשי כזה).
חזקות ולוגריתמים
- לכל מספר ממשי
ולכל מספר טבעי נגדיר כפל n פעמים - לכל מספר ממשי אי שלילי
ולכל מספר טבעי נגדיר את להיות המספר האי שלילי שבחזקת n שווה לx ( ) - לכל מספר ממשי אי שלילי
ולכל זוג מספרים טבעיים נגדיר - לכל מספר ממשי
נגדיר
- מה לגבי חזקות ממשיות אי רציונליות?
- נגדיר אותן באמצעות גבול של חזקות רציונאליות (לא נפרט כאן)
- לכל מספר ממשי
ולכל חזקה ממשית שלילית נגדיר
- לכל
נגדיר את להיות המספר שa בחזקתו שווה לx. - חוקי לוגים:
חסמים
- תהי
אזי: נקרא המקסימום של A או האיבר הגדול ביותר של A אם לכל מתקיים כי נקרא חסם מלעיל של A אם לכל מתקיים כי נקרא המינימום של A או האיבר הקטן ביותר של A אם לכל מתקיים כי נקרא חסם מלרע של A אם לכל מתקיים כי
- כמו כן:
- אם יש איבר קטן ביותר בקבוצת חסמי המלעיל של A הוא נקרא החסם העליון של A, או הסופרמום של A ומסומן
- אם יש איבר גדול ביותר בקבוצת חסמי המלרע של A הוא נקרא החסם התחתון של A, או האינפימום של A ומסומן
- אם יש איבר קטן ביותר בקבוצת חסמי המלעיל של A הוא נקרא החסם העליון של A, או הסופרמום של A ומסומן
- בשדה הממשיים לכל קבוצה לא ריקה וחסומה מלעיל יש חסם עליון, ולכל קבוצה לא ריקה וחסומה מלרע יש חסם תחתון.
- בשדה הרציונאליים זה לא נכון; לקבוצה
אין מספר רציונאלי קטן ביותר מבין חסמי המלעיל שלה.
- תהי
ויהי אזי:- M הוא החסם העליון של A אם ורק אם M הוא חסם מלעיל של A ולכל מספר
קיים מספר כך ש - m הוא החסם התחתון של A אם ורק אם m הוא חסם מלרע של A ולכל מספר
קיים מספר כך ש
- M הוא החסם העליון של A אם ורק אם M הוא חסם מלעיל של A ולכל מספר
- דוגמא: תהיינה
חסומות מלעיל כך שA אינה מכילה חסמי מלעיל של B, אזי
פרק 2 - סדרות
הגדרת הגבול
- הגדרת הגבול של סדרה:
- תהי סדרה ממשית
ויהי מספר ממשי . הינו גבול הסדרה (מסומן או ) אם:- לכל סביבה של הגבול, קיים מקום בסדרה שאחריו כל איברי הסדרה נמצאים בסביבה הנתונה, כלומר:
- לכל מרחק
קיים מקום כך שאחריו לכל מתקיים כי
- נגדיר ש
אם לכל קיים כך שלכל מתקיים כי - נגדיר ש
אם
- טענה: תהי
אזי - טענה: תהי
אזי
- הגבול הוא יחיד
- מספר סופי של איברים לא משפיע על הגבול
- סדרה מתכנסת במובן הצר חסומה
מבוא לחשבון גבולות (אריתמטיקה של גבולות)
- (אי שיוויון המשולש.)
- סכום.
- מכפלה.
- חלוקה.
כלים לחישוב גבולות
- סנדביץ' וחצי סדנביץ'
- חסומה כפול אפיסה היא אפיסה.
- מבחן המנה (הוכחה בסיכום הבא על אי-שוויון הממוצעים).
- תהי סדרה
המקיימת כי גבול המנה הוא אזי:- אם
מתקיים כי - אם
מתקיים כי - מתקיים כי
- אם
- תהי סדרה
- דוגמא:
- אינדוקציה.
- ברנולי - אקספוננט חיובי שואף לאפס, אחד או אינסוף.
חשבון גבולות (אריתמטיקה של גבולות)
- אריתמטיקה מורחבת (הכתיב הוא מקוצר ואינו מדוייק):
- חסומה כפול אפיסה = אפיסה
- חסומה חלקי אינסוף = אפיסה
- אינסוף כפול סדרה השואפת למספר חיובי = אינסוף.
- אינסוף כפול סדרההשואפת למספר שלילי = אינסוף.
- יש גבול סופי + אין גבול סופי = אין גבול סופי.
- אינסוף ועוד חסומה שווה אינסוף.
- אם
אזי - חזקת סדרות שואפת לחזקת הגבולות.
המקרים הבעייתיים
- המקרים הבעייתיים בהם צריך להפעיל מניפולציות אלגבריות או משפטים על מנת לחשב את הגבול:
סדרות מונוטוניות והמספר e
- כל סדרה מונוטונית הינה חסומה מתכנסת לגבול סופי, או שאינה חסומה ושואפת לגבול אינסופי.
- המספר e (הוכחות בעזרת אי-שוויון הממוצעים).
.- אם
אזי , כאשר הוא המספר השלם הגדול ביותר שקטן או שווה ל .- שני הצדדים שואפים לe ולכן לפי כלל הסנדוויץ הסדרה אכן שואפת לe.
- אם
אזי- ראשית
(הוכחה בקישור לערך על המספר e). - כעת חזקה שלילית הופכת את השבר, וניתן לסיים את ההוכחה באופן דומה להוכחה במקרה הקודם.
- ראשית
- אם
אזי . בין אם שלילי או חיובי, לפי הטענות לעיל.- שימו לב שאם
, אז ממילא מקבלים 1 בנוסחא הסופית, ואז לא צריך לחלק ב ששווה אפס.
- דוגמא:
תתי סדרות וגבולות חלקיים
פרק 3 - טורים
פרק 4 - פונקציות ורציפות
מבוא לגבולות
- מבוא לגבולות (שיטות אלגבריות: כפל בצמוד, הוצאת חזקה משמעותית).
הגדרת הגבול לפי קושי
הגדרת הגבול לפי היינה
- מרבית כללי האריתמטיקה המורחבות נובעים "בחינם" עבור פונקציות
- אם ניתן לחלק סדרה לתתי סדרות שכולן מתכנסות לאותו גבול, אזי זה גבול הסדרה.
- מסקנה: גבול של פונקציה קיים בנקודה אם"ם הגבולות החד צדדיים קיימים ושווים לו.
הפונקציות הטריגונומטריות
- הגדרת סינוס וקוסינוס ע"י מעגל היחידה.
- עבור זוית
שטח המשולש חסום בשטח הגזרה (משולש פיצה עם הקשה) שחסום בשטח המשולש: - כיוון ש
בתחום , נובע לפי סנדוויץ' ש . - כיוון שמדובר בפונקציה אי זוגית, נובע שזה גם הגבול משני הצדדים.
- כעת בתחום
הקוסינוס חיובית ולכן ונובע כי .
- כיוון ש
- נחלק את אי השיוויון הטריגונומטרי בסינוס ונקבל:
- לפי כלל הסנדביץ
- כיוון שמדובר בפונקציה זוגית, נובע שהגבול משני הצדדים שווה 1.
- עבור זוית
- ראינו ש
. - שימו לב ש
, כיוון שמדובר בחסומה חלקי שואפת לאינסוף.
רציפות
- גבול של הרכבת פונקציות נכשל ללא רציפות.
מתקיים כי אבל .
- רציפות.
- הגדרה:
- פונקציה f נקראית רציפה בקטע
אם f רציפה בכל נקודה בקטע ובנוסף וגם
- טענה: אם f רציפה ב
אזי לכל סדרה (גם אם אינה שונה מ ) מתקיים כי . - הרכבת רציפות: תהי f רציפה ב
ותהי g רציפה ב . אזי רציפה ב .- הוכחה:
- תהי סדרה
אזי - לפי הטענה הקודמת,
.
- מיון אי רציפות.
- רציפות - הגבול בנקודה שווה לערך בנקודה.
- סליקה - הגבול קיים וסופי בנקודה, אך שונה מהערך בנקודה או שהפונקציה אינה מוגדרת בנקודה.
- קפיצתית (מין ראשון) - הגבולות החד צדדיים קיימים סופיים ושונים בנקודה.
- עיקרית (מין שני) - אחד הגבולות החד צדדיים אינו קיים או שאינו סופי.
פרק 5 - גזירות
הגדרת הנגזרת
- הסבר לגבי שיטת ההצבה בה השתמשנו לעיל:
- נניח כי
ונוכיח כי , והוכחה דומה בכיוון ההפוך. - תהי
נגדיר את הסדרה . - כיוון ש
נובע כי .
- אם f גזירה בנקודה, היא רציפה בנקודה:
- צ"ל
- לפי אריתמטיקה של גבולות זה שקול ל
- לפי עקרון win (קיצור של wouldn't it be nice?) מתקיים כי
- צ"ל
- פונקציה הערך המוחלט אינה גזירה באפס
וגבול זה אינו קיים, כיוון שהגבולות החד צדדים שונים.- ניתן לשים לב גם ש
, וכמו כן נראה בהמשך כי אינה גזירה באפס.
הנגזרות של הפונקציות האלמנטריות
- טריגו:
- באופן דומה
- לוג:
- המעבר האחרון נובע מהעובדה שפונקצית הלוג רציפה.
- (בפרט נובע כי
.)
- בפרט נובע כי
- בפרט נובע כי
- אקספוננט:
- בפרט נובע כי
.
- בפרט נובע כי
- חזקה:
לכל , הוכחה בהמשך.- בפרט:
תהי f גזירה ב
- תהי סדרה
. - רוצים לומר ש
. - אמנם
בגלל שהרציפות נובעת מהגזירות, אבל לא ידוע ש ובמקרה זה אנחנו כופלים ומחלקים באפס. - אם יש תת סדרה
של עבורה אזי ולכן . - לכן
. - כמו כן,
. - לכן בכל מקרה קיבלנו כי
- סה"כ
.
נגזרת של חזקה
- עבור
מתקיים - דוגמא: חישוב הנגזרת של
נגזרת מנה
תהיינה f,g גזירות בנקודה x כך ש
- נזכור כי
- אזי בנקודה x מתקיים:
פונקציות הופכיות ונגזרתן
- פונקציות הפיכות (הוכחות והגדרות מדוייקות בבדידה).
- פונקציה
הפיכה אם"ם היא חח"ע ועל - הפונקציה ההופכית היא
ומתקיים כי אם"ם
- פונקציה
- טענה: אם
רציפה בקטע , אזי רציפה בקטע .- הוכחה:
- תהי
, צ"ל ש - יהי גבול חלקי
. - אזי
. - מצד שני, לפי רציפות הפונקציה f מתקיים
. - לכן
ולכן .
- טענה: תהי
הפיכה ורציפה. ונניח כי היא גזירה בנק' כך ש .
- אזי
גזירה בנק' ומתקיים כי או בנוסח אחר-
- הוכחה:
- תהי
ונסמן . - אזי מתוך רציפות וחח"ע נובע כי
- דוגמא חשובה:
הפיכה וההופכית שלה נקראית .
פרק 6 - חקירה
משפטי חקירת פונקציות
- משפט ערך הביניים.
- תהי f רציפה ב
כך ש , הוכיחו שקיימת נק' עבורה- נעביר אגף ונביט בפונקציה
שצריך למצוא שורש שלה. . ולכן קיימת נקודה עבורה .- לפי משפט ערך הביניים בקטע
קיימת נק' המאפסת את הפונקציה h.
- נעביר אגף ונביט בפונקציה
- משפטי ויירשטראס.
- פונקציה רציפה בקטע סופי סגור - חסומה.
- פונקציה רציפה בקטע סופי סגור - מקבלת מינימום ומקסימום.
- משפט פרמה.
- אם פונקציה גזירה בנק' קיצון מקומי, הנגזרת שווה שם לאפס.
- ההפך אינו נכון.
- משפט רול.
- פונקציה רציפה בקטע סגור, וגזירה בקטע הפתוח, שמקבלת את אותו ערך בקצוות - הנגזרת שלה מתאפסת בקטע הפתוח.
- לפולינום יש לכל היותר n שורשים שונים.
- משפט לגראנז'.
- פונקציה רציפה בקטע סגור, וגזירה בקטע הפתוח מקבלת את השיפוע בין שתי נקודות הקצה בנגזרת בנק' כלשהי.
- משפט לגראנז' המוכלל.
- שתי פונקציות רציפות בקטע סגור, גזירות בקטע הפתוח, והנגזרת של האחת אינה מתאפסת. אזי מנת הנגזרות שווה למנת השיפועים בנק' מסויימת.
- הוכחת משפט לגראנז' המוכלל, שמוכיח גם את משפט לגראנז' עצמו כמקרה פרטי.
- ראשית, כיוון ש
בקטע נובע לפי רול כי ולכן מותר לחלק בהפרש ביניהם. ולכן לפי רול קיימת נק' עבורה וזה מה שרצינו להוכיח.- (שימו לב שמותר לחלק ב
.) - עבור
נקבל את משפט לאגראנז' הרגיל.
- ראשית, כיוון ש
קשר בין הנגזרת לפונקציה
- פונקציה גזירה עולה אם"ם הנגזרת שלה גדולה או שווה אפס.
- פונקציה עולה ממש אם"ם הנגזרת שלה גדולה או שווה אפס, ולא מתאפסת על קטע.
כלל לופיטל
- כלל לופיטל (הוכחה לאפס חלקי אפס בנקודה סופית).
- כיצד להעזר בלופיטל בכל אחד מהמקרים הבעייתיים.