אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית
אלגוריתם לביצוע אינטגרל על פונקציה רציונאלית
תהי פונקציה מהצורה [math]\displaystyle{ f(x)=\frac{p(x)}{q(x)} }[/math] כאשר p,q פולינומים. נתאר אלגוריתם לחישוב [math]\displaystyle{ \int f(x)dx }[/math] כאשר נקודת הכשל האפשרית היחידה באלגוריתם היא חוסר היכולת לפרק את הפולינום q לגורמים אי פריקים. פרט למצב זה האלגוריתם יביא בהכרח לפתרון הבעייה.
מצב ראשון
אם הדרגה של פולינום המונה p קטנה ממש מדרגת פולינום המכנה q אזי נפרק את q לגורמים אי פריקים. [math]\displaystyle{ q(x)=(x-a_1)^{n_1}\cdots (x-a_k)^{n_k}\cdot(x^2+c_1x+b_1)^{m_1}\cdots (x^2+c_jx+b_j)^{m_j} }[/math]