המספר e
המספר e
הוכחנו בהרצאה כי לסדרה [math]\displaystyle{ a_n=\Big( 1+\frac{1}{n}\Big)^n }[/math] יש גבול ממשי. אנו מגדירים את המספר e להיות גבול הסדרה הזו.
- [math]\displaystyle{ e:=\lim\Big( 1+\frac{1}{n}\Big)^n }[/math]
משפט. תהי [math]\displaystyle{ a_n }[/math] סדרה כלשהי המתכנסת במובן הרחב לאינסוף, אזי [math]\displaystyle{ e=\lim\Big(1+\frac{1}{a_n}\Big)^{a_n} }[/math]
משפט. תהי [math]\displaystyle{ a_n }[/math] סדרה כלשהי המתכנסת במובן הרחב לאינסוף, ותהי [math]\displaystyle{ b_n }[/math] סדרה המתכנסת (במובן הצר, או במובן הרחב) לגבול L. אזי [math]\displaystyle{ e^L=\lim\Big(1+\frac{1}{a_n}\Big)^{a_n\cdot b_n} }[/math]