אינפי 1, תשנ"ו מועד ב' - פתרון (זלצמן)
קישור לבחינה עצמה: המבחן
שאלה 1
יהי [math]\displaystyle{ \sum_{n=1}^{\infty }b_{n} }[/math] טור חיובי.
א. הראה שאם [math]\displaystyle{ \left \{a_{n} \right \}_{n=1}^{\infty } }[/math] סדרה המקיימת לכל n [math]\displaystyle{ |a_{n+1}-a_{n}|\lt b_{_{n}} }[/math] וכן [math]\displaystyle{ \sum_{n=1}^{\infty }b_{n}\lt \infty }[/math] אזי הסדרה מתכנסת.
הוכחה:
אם הטור מתקיים התנאים הנ"ל כלומר: [math]\displaystyle{ \sum_{n=1}^{\infty }b_{n}\lt \infty }[/math] וגם [math]\displaystyle{ \sum_{n=1}^{\infty }b_{n} }[/math] טור חיובי, אזי הטור מתכנס. שכן סדרת הסכומים החלקיים שלו היא מונוטונית עולה וחסומה מילעל ולכן מתכנסת.
נוכיח כי הסדרה הינה קושי וזאת באמצעות הקריטריון של קושי להתכנסות סדרות.
יהי [math]\displaystyle{ \varepsilon \gt 0 }[/math]. לפי קריטריון קושי קיים [math]\displaystyle{ M\in \mathbb{N} }[/math] כך שלכל [math]\displaystyle{ p\in \mathbb{N} }[/math] מתקיים [math]\displaystyle{ |\sum_{i=M}^{M+p}b_{i}|\lt \varepsilon }[/math].
יהיו [math]\displaystyle{ n,m\gt M }[/math], אזי:
[math]\displaystyle{ |a_{n}-a_{m}|=|a_{n}-a_{n-1}+a_{n-1} - .... + a_{m+1}-a_{m}|\leq |a_{n}-a_{n-1}| + |a_{n-1}-a_{n-2}| +....+|a_{m+1}-a_{m}|\leq b_{n-1}+b_{n-2}+...+b_{m}=\sum_{i=m}^{n-1}b_{i}\leq \sum_{i=M}^{n-1}b_{i}\lt \varepsilon }[/math]
הראנו שהסדרה היא קושי ולכן מתכנסת.
ב. אם הטור [math]\displaystyle{ \sum_{n=1}^{\infty }b_{n} }[/math] אז קיימת סדרה [math]\displaystyle{ \left \{a_{n} \right \}_{n=1}^{\infty } }[/math] המקיימת לכל n [math]\displaystyle{ |a_{n+1}-a_{n}|\lt b_{_{n}} }[/math] וגם מתבדרת.
הוכחה:
נביט בסדרת הסכומים החלקיים של הטור (עם שינוי קל): [math]\displaystyle{ S_{n}=\sum_{i=1}^{n-1}b_{i} }[/math] ונגדיר [math]\displaystyle{ S_{1}=0 }[/math]
הטור [math]\displaystyle{ \sum_{n=1}^{\infty }b_{n} }[/math] מתבדר ולכן לפי ההגדרה (כי הוספת איבר אחד בהתחלה אינה משפיעה על התכנסות או התבדרות הסדרה) הסדרה מתבדרת.
כמו כן, קל לראות כי מתקיים התנאי: [math]\displaystyle{ |S_{n+1}-S_{n}|=|\sum_{i=1}^{n}b_{i}-\sum_{i=1}^{n-1}b_{i}|=|b_{n}|=b_{n} }[/math]
מ.ש.ל
שאלה 2
בדוק התכנסות והתכנסות בהחלט של הטורים הבאים:
א. [math]\displaystyle{ \sum\frac{(-1)^{n}ln(n)}{n} }[/math]
פתרון:
ראשית נבודק התכנסות בהחלט: [math]\displaystyle{ \sum|\frac{(-1)^{n}ln(n)}{n}|=\sum\frac{ln(n)}{n} }[/math]
[math]\displaystyle{ 1\lt ln(n) }[/math] לכל [math]\displaystyle{ 3\leq n }[/math] ולכן לכל [math]\displaystyle{ n }[/math] שכזה מתקיים: [math]\displaystyle{ \frac{1}{n}\leq \frac{ln(n)}{n} }[/math]
ולפי מבחן ההשוואה הראשון הטור מכיוון שהטור ההרמוני מתבדר אז [math]\displaystyle{ \sum\frac{ln(n)}{n} }[/math] מתבדר.
ידוע [math]\displaystyle{ \lim_{n\rightarrow \infty }\frac{ln(n)}{n}=0 }[/math] (ואם אתם לא מאמינים לי אפשר להוכיח את זה עם לפיטל) ולכן מספיק להוכיח שהסדרה מונוטונית יורדת כדי להסיק התכנסות בתנאי לפי לייבניץ':
נביט בפונקציה [math]\displaystyle{ f(x)=\frac{ln(x)}{x} }[/math], מספיק להראות ש[math]\displaystyle{ f'(x)\leq 0 }[/math] כאשר [math]\displaystyle{ x\geq 3 }[/math].
[math]\displaystyle{ f'(x)=\frac{1-ln(x)}{x^2} }[/math] וקל לראות שהתנאי לעיל מתקיים עבור [math]\displaystyle{ x\geq e }[/math] ובפרט עבור [math]\displaystyle{ x\geq 3 }[/math].
ב. [math]\displaystyle{ \sum (-1)^nsin(\frac{1}{n^2}) }[/math]
פתרון: נראה התכנסות בהחלט לפי מבחן ההשוואה הגבולי
[math]\displaystyle{ \frac{sin(\frac{1}{n^2})}{\frac{1}{n^2}}\rightarrow 1 }[/math] ולכן הטורים חברים.
מכיוון [math]\displaystyle{ \sum\frac{1}{n^2} }[/math] מתכנס אז גם [math]\displaystyle{ \sum sin(\frac{1}{n^2}) }[/math].
ג. [math]\displaystyle{ \sum (-1)^n\frac{(2n)!}{n^{2n}} }[/math]
פתרון: