מבחני התכנסות לאינטגרלים לא אמיתיים

מתוך Math-Wiki
גרסה מ־22:08, 10 במאי 2013 מאת Ofekgillon10 (שיחה | תרומות) (יצירת דף עם התוכן "==אינטגרלים לא אמיתיים מסוג ראשון== ===מבחן ההשוואה הראשון=== יהי <math> a \in \mathbb{R} </math>, ותהי נק' <ma...")
(הבדל) → הגרסה הקודמת | הגרסה האחרונה (הבדל) | הגרסה הבאה ← (הבדל)

אינטגרלים לא אמיתיים מסוג ראשון

מבחן ההשוואה הראשון

יהי [math]\displaystyle{ a \in \mathbb{R} }[/math], ותהי נק' [math]\displaystyle{ c\geq a }[/math] כך שמתקיים [math]\displaystyle{ \forall_{x\geq c} : g(x)\geq f(x)\geq 0 }[/math].

אזי מתקיים:

[math]\displaystyle{ \int_a^{\infty} g(x)dx }[/math] מתכנס [math]\displaystyle{ \int_a^{\infty} f(x)dx \Leftarrow }[/math] מתכנס

[math]\displaystyle{ \int_a^{\infty} f(x)dx }[/math] מתבדר [math]\displaystyle{ \int_a^{\infty} g(x)dx \Leftarrow }[/math] מתבדר

דוגמא.

קבע האם [math]\displaystyle{ \int_1^\infty \frac{\arctan(x)}{x} dx }[/math] מתכנס או מתבדר

פתרון. נשים לב כי [math]\displaystyle{ \arctan(x) }[/math] היא פונקציה מונוטונית עולה ולכן בתחום האינטגרציה:

[math]\displaystyle{ \forall_{x\gt 1}: \arctan(x)\gt \arctan(1)=\frac{\pi}{4}\gt 0 }[/math] ולכן [math]\displaystyle{ \forall_{x\gt 1}: \frac{\arctan(x)}{x}\gt \frac{\pi}{4x}\gt 0 }[/math]

[math]\displaystyle{ \int_1^\infty \frac{\pi}{4x}dx= \frac{\pi}{4} \int_1^\infty \frac1x dx }[/math] מתבדר, ולכן, עפ"י מבחן ההשוואה הראשון, האינטגרל שלנו גם כן מתבדר.