מבחני התכנסות לאינטגרלים לא אמיתיים

מתוך Math-Wiki
הגרסה להדפסה אינה נתמכת עוד וייתכן שיש בה שגיאות תיצוג. נא לעדכן את הסימניות בדפדפן שלך ולהשתמש בפעולת ההדפסה הרגילה של הדפדפן במקום זה.

אינטגרלים לא אמיתיים מסוג ראשון

מבחן ההשוואה הראשון

יהי [math]\displaystyle{ a \in \mathbb{R} }[/math], ותהי נק' [math]\displaystyle{ c\geq a }[/math] כך שמתקיים [math]\displaystyle{ \forall_{x\geq c} : g(x)\geq f(x)\geq 0 }[/math].

אזי מתקיים:

[math]\displaystyle{ \int_a^{\infty} g(x)\mathrm{d}x }[/math] מתכנס [math]\displaystyle{ \int_a^{\infty} f(x)\mathrm{d}x \Leftarrow }[/math] מתכנס

[math]\displaystyle{ \int_a^{\infty} f(x)\mathrm{d}x }[/math] מתבדר [math]\displaystyle{ \int_a^{\infty} g(x)\mathrm{d}x \Leftarrow }[/math] מתבדר

דוגמא.

קבע האם [math]\displaystyle{ \int_1^\infty \frac{\arctan(x)}{x} \mathrm{d}x }[/math] מתכנס או מתבדר

פתרון. נשים לב כי [math]\displaystyle{ \arctan(x) }[/math] היא פונקציה מונוטונית עולה ולכן בתחום האינטגרציה:

[math]\displaystyle{ \forall_{x\gt 1}: \arctan(x)\gt \arctan(1)=\frac{\pi}{4}\gt 0 }[/math] ולכן [math]\displaystyle{ \forall_{x\gt 1}: \frac{\arctan(x)}{x}\gt \frac{\pi}{4x}\gt 0 }[/math]

[math]\displaystyle{ \int_1^\infty \frac{\pi}{4x}\mathrm{d}x= \frac{\pi}{4} \int_1^\infty \frac1x \mathrm{d}x }[/math] מתבדר, ולכן, עפ"י מבחן ההשוואה הראשון, האינטגרל שלנו גם כן מתבדר.

מבחן ההשוואה הגבולי

יהי [math]\displaystyle{ a \in \mathbb{R} }[/math], ותהיינה שתי פונקציות [math]\displaystyle{ f(x), g(x) }[/math] כך ש: [math]\displaystyle{ \forall_{x\geq a}:f(x),g(x)\gt 0 }[/math]

יהי הגבול: [math]\displaystyle{ \lim_{x\to\infty}\frac{f(x)}{g(x)}=L }[/math]

אזי:

אם [math]\displaystyle{ L\gt 0 , L\in\mathbb{R} }[/math] אז [math]\displaystyle{ \int_a^\infty f(x)\mathrm{d}x }[/math] ו- [math]\displaystyle{ \int_a^\infty g(x)\mathrm{d}x }[/math] מתכנסים או מתבדרים יחדיו ("חברים").

אם [math]\displaystyle{ L=0 }[/math] אז [math]\displaystyle{ \int_a^\infty g(x)\mathrm{d}x }[/math] מתכנס [math]\displaystyle{ \int_a^\infty f(x)\mathrm{d}x \Leftarrow }[/math] מתכנס.

אם [math]\displaystyle{ L=\infty }[/math] אז [math]\displaystyle{ \int_a^\infty f(x)\mathrm{d}x }[/math] מתכנס [math]\displaystyle{ \int_a^\infty g(x)\mathrm{d}x \Leftarrow }[/math] מתכנס.