88-112 לינארית 1 תיכוניסטים קיץ תשעא/מערך תרגול/9
מטריצות מייצגות
הגדרה. תהי [math]\displaystyle{ T:V\rightarrow W }[/math] העתקה לינארית, ויהיו [math]\displaystyle{ E,F }[/math] בסיסים ל[math]\displaystyle{ V,W }[/math] בהתאמה. נסמן [math]\displaystyle{ E=\{v_1,...,v_n\} }[/math]. אזי המטריצה המייצגת את T מבסיס E לבסיס F הינה המטריצה שעמודותיה הן הקואורדינטות לפי הבסיס F של התמונות של איברי הבסיס E. מסמנים
[math]\displaystyle{ [T]^E_F =\begin{pmatrix}
| & | & & | \\
\big[Tv_1]_F & [Tv_2]_F &\cdots &[Tv_n]_F \\
| & | & & | \\
\end{pmatrix} }[/math]
הערה1 : המטריצה [math]\displaystyle{ [T]^E_F }[/math] היא המטריצה היחידה המקיימת את הטענה הבאה
לכל וקטור [math]\displaystyle{ v\in V }[/math] מתקיים ש [math]\displaystyle{ [T]^E_F[v]_E=[Tv]_F }[/math]
הערה 2 יהיו [math]\displaystyle{ V_1, V_2, V_3 }[/math] מרחבים וקטורים עם בסיסים [math]\displaystyle{ B_1, B_2, B_3 }[/math]בהתאמה.
יהיו [math]\displaystyle{ T:V_1\to V_2 S:V_2\to V_3 }[/math] שתי ה"ל אזי מתקיים
[math]\displaystyle{ [S\circ T]^{B_1}_{B_3}=[S]^{B_2}_{B_3}\cdot[T]^{B_1}_{B_2} }[/math]
הערה3: שימו לב שאם ניקח את הוקטורים [math]\displaystyle{ Tv_1,...,Tv_n }[/math] ונשים אותם באופן נאיבי בעמודות מטריצה נקבל [math]\displaystyle{ [T]^E_S }[/math] (כאשר S הוא הבסיס הסטנדרטי)
אלגוריתם למציאת מטריצה המייצגת את ההעתקה בין בסיסים כלשהם
יהיו מ"ו V,W והעתקה T בינהם ובסיסים E,F בדיוק כמו בהגדרה לעיל. אזי:
- מצא את מטריצת המעבר [math]\displaystyle{ [I]^F_S }[/math] (קל, לשים את הקואורדינטות לפי הבסיס הסטנדרטי של איברי F בעמודות)
- הפוך אותה על מנת לקבל את [math]\displaystyle{ [I]^S_F }[/math]
- הפעל את ההעתקה T על איברי הבסיס E לקבל [math]\displaystyle{ Tv_1,...,Tv_n }[/math]
- שים את הקואורדינטות לפי הבסיס הסטנדרטי של התמונות משלב שלוש בעמודות מטריצה [math]\displaystyle{ [T]^E_S }[/math]
- כפול מטריצות על מנת לקבל [math]\displaystyle{ [T]^E_F=[I]^S_F[T]^E_S }[/math]
אלגוריתם למציאת העתקה מפורשת לפי תמונות איברי הבסיס בלבד
תהי T העתקה לינארית הנתונה על ידי התמונות של איברי בסיס [math]\displaystyle{ B=\{v_1,...,v_n\} }[/math]. רוצים למצוא את [math]\displaystyle{ Tv }[/math] עבור [math]\displaystyle{ v\in V }[/math] וקטור כלשהו.
- נבצע את האלגוריתם לעיל על מנת למצוא את [math]\displaystyle{ [T]^E_S }[/math].
- נכפול במטריצת המעבר על מנת לקבל [math]\displaystyle{ [T]=[T]^S_S=[T]^E_S[I]^S_E }[/math]
- [math]\displaystyle{ [T][v]=[Tv] }[/math] מכיוון שכל אלה בבסיס הסטנדרטי, נכפול בוקטור כללי מהמרחב על מנת למצוא לאן הוא נשלח במפורש.
דוגמא
תרגיל. יהיו [math]\displaystyle{ V=span\{v_1=(1,0,-1,1),v_2=(-2,1,2,0),v_3=(0,-1,0,1)\} }[/math] ו [math]\displaystyle{ W=\mathbb{R}_3[x] }[/math] מ"ו. תהי העתקה T מV לW המקיימת [math]\displaystyle{ \forall i:Tv_i=w_i }[/math] כאשר
[math]\displaystyle{ w_1=1+x }[/math]
[math]\displaystyle{ w_2=x^3+x^2+x+1 }[/math]
[math]\displaystyle{ w_3=0 }[/math]
מצא את ההעתקה T במפורש.
פתרון.
דבר ראשון נמצא את המטריצה המייצגת מB לבסיס הסטדנרטי של הפולינומים S. נשים את התמונות בעמודות
[math]\displaystyle{ [T]^B_S =\begin{pmatrix} | & | & | \\ \big[Tv_1]_S & [Tv_2]_S &[Tv_3]_S \\ | & | & | \\ \end{pmatrix}= \begin{pmatrix} | & | & | \\ \big[w_1]_S & [w_2]_S &[w_3]_S \\ | & | & | \\ \end{pmatrix}= \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} }[/math]
כעת נמצא את מטריצת המעבר. שימו לב שאנו עוסקים במקרה מיוחד. המרחב שלנו אינו מרחב מוכר, ואנו צריכים למצוא לו בסיס סטנרטי על מנת לקחת את הקואורדינטות של איברי הבסיס הנתון לפי אותו בסיס סטנדרטי שנמציא.
כל הוקטורים בV הינם צירופים לינאריים של הבסיס הנתון. ניקח צירוף לינארי כללי ונראה בקלות שהוא מהצורה [math]\displaystyle{ (-s,t,s,r)) }[/math] ולכן בסיס סטנדרטי שקל להוציא את הקואורדינטות לפיו יהיה [math]\displaystyle{ S_V=\{(-1,0,1,0),(0,1,0,0),(0,0,0,1)\} }[/math]. מדוע הוא סטנדרטי? קל מאד לראות שלכל וקטור במרחב [math]\displaystyle{ [(-x,y,x,z)]_{S_V}=(x,y,z) }[/math].
כעת נמצא מטריצת מעבר [math]\displaystyle{ [I]^B_{S_V}=
\begin{pmatrix}
-1 & 2 & 0 \\
0 & 1 & -1 \\
1 & 0 & 1 \\
\end{pmatrix}
}[/math]
נהפוכו על מנת לקבל:
[math]\displaystyle{ [I]^{S_V}_B=([I]^B_{S_V})^{-1}=\frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 1 & 1 & 1 \\ 1 & -2 & 1 \\ \end{pmatrix} }[/math]
ביחד אנו מקבלים
[math]\displaystyle{ [T]^{S_V}_S=[T]^{B}_S\cdot [I]^{S_V}_B= \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ \end{pmatrix} \cdot \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 1 & 1 & 1 \\ 1 & -2 & 1 \\ \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 0 & 3 & 3 \\ 0 & 3 & 3 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{pmatrix} }[/math]
לכן, [math]\displaystyle{ [T(-x,y,x,z)]_S=[T]^{S_V}_S[(-x,y,x,z)]_{S_V}=
\frac{1}{3}
\begin{pmatrix}
0 & 3 & 3 \\
0 & 3 & 3 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
x \\
y \\
z \\
\end{pmatrix}
=
\begin{pmatrix}
y+z \\
y+z \\
\frac{1}{3}(x+y+z) \\
\frac{1}{3}(x+y+z) \\
\end{pmatrix}
}[/math]
ולכן בסופו של דבר:
[math]\displaystyle{ T(-a,b,a,d)=b+d +(b+d)x + \frac{1}{3}(a+b+d)x^2+ \frac{1}{3}(a+b+d)x^3 }[/math]
תרגיל. (6.12) תהי [math]\displaystyle{ T:\mathbb{R}^2\rightarrow \mathbb{R}^2 }[/math] העתקה של שיקוף ביחס לציר x. מצא בסיס סדור B ל [math]\displaystyle{ \mathbb{R}^2 }[/math] עבורו [math]\displaystyle{ [T]_B=\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} }[/math]
פתרון.
בסיס סדור יכיל שני וקטורים [math]\displaystyle{ v_1=(a,b),v_2=(c,d) }[/math]. לפי הנתונים [math]\displaystyle{ T(a,b)=(a,-b) }[/math] וגם [math]\displaystyle{ T(c,d)=(c,-d) }[/math].
עמודות המטריצה המייצגת הינן הקואורדינטות של התמונות של איברי הבסיס, לפי הבסיס. לכן
[math]\displaystyle{ (a,-b)=T(a,b)=(-1)\cdot (a,b) + 0 \cdot (c,d) }[/math]
[math]\displaystyle{ (c,-d)=T(c,d)=2\cdot (a,b) + 1 \cdot (c,d) }[/math]
ביחד קיבלנו 4 משוואות:
[math]\displaystyle{ a=-a \Rightarrow a=0 }[/math]
[math]\displaystyle{ -b=-b }[/math]
[math]\displaystyle{ c=2a+c=c }[/math]
[math]\displaystyle{ -d = 2b+d \Rightarrow d=-b }[/math]
לכן, עלינו לבחור [math]\displaystyle{ b,c,d }[/math] שיקיימו את המשוואות לעיל וגם יתקיים שהוקטורים [math]\displaystyle{ (a,b),(c,d) }[/math] בת"ל.
לכן b אינו אפס, וגם c אינו אפס. d חייב להיות -b.
ניקח [math]\displaystyle{ (0,1),(1,-1) }[/math] ואכן תנאי השאלה מתקיימים.
מחלקת שקילות של מטריצות המייצגות העתקה
טענה: יהא [math]\displaystyle{ V }[/math] מ"ו מימד סופי [math]\displaystyle{ B=\{v_1,\dots v_n\} }[/math] בסיס. תהא [math]\displaystyle{ A\in \mathbb{F}^{n\times n} }[/math] הפיכה. אזי קיים [math]\displaystyle{ B' }[/math] בסיס אחר כך ש [math]\displaystyle{ [I]^{B'}_B= A }[/math]
(במילים: המטריצה A היא מטריצת מעבר מאיזה שהוא בסיס אחר לבסיס הנתון)
הוכחה:נגדיר [math]\displaystyle{ B'=\{v'_1,\dots v'_n\} }[/math] ע"י [math]\displaystyle{ v'_j=\sum_{i=1}^n A_{i,j}\cdot v_i }[/math]. לפי הגדרה מתקיים כי [math]\displaystyle{ [I]^{B'}_B= A }[/math]. נותר להוכיח כי אכן [math]\displaystyle{ B' }[/math] בסיס. כיוון ש [math]\displaystyle{ |B'|=n }[/math] אזי אם נוכיח כי [math]\displaystyle{ B' }[/math] בת"ל אזי הוא בסיס לפי השלישי חינם.
נוכיח כי [math]\displaystyle{ B' }[/math] בת"ל
נניח כי [math]\displaystyle{ \sum_{j=1}^n \alpha_j v'_j =0 }[/math]. צ"ל כי [math]\displaystyle{ \forall i \alpha_i =0 }[/math]
[math]\displaystyle{ 0=\sum_{j=1}^n \alpha_j v'_j =\sum_{j=1}^n \alpha_j \sum_{i=1}^n A_{i,j}\cdot v_i =\sum_{i=1}^n \big( \sum_{j=1}^n \alpha_j A_{i,j} \big) \cdot v_i }[/math]
כיוון ש [math]\displaystyle{ B }[/math] בת"ל נקבל כי לכל [math]\displaystyle{ j }[/math] מתקיים כי [math]\displaystyle{ \sum_{j=1}^n \alpha_j A_{i,j} =0 }[/math] תרגיל. נגדיר יחס על המטריצות הריבועיות: A נמצאת ביחס עם B (או "A מתייחסת ל-B") אם B הינה המטריצה המייצגת של ההעתקה [math]\displaystyle{ T_Av:=Av }[/math] ביחס לבסיס כלשהו. הראו שזהו יחס שקילויות, והוכיחו שפונקציית הtrace מוגדרת היטב על חבורת המנה
הוכחה.
- רפלקסיביות: A מייצגת את ההעתקה של עצמה ביחס לבסיס הסטנדרטי, שכן [math]\displaystyle{ Ae_i=C_i(A) }[/math]
- סימטריות: נניח B מייצגת את ההעתקה של A. אזי [math]\displaystyle{ B=[T_A]^E_E }[/math]. כפי שהראינו קודם [math]\displaystyle{ B=[T_B]^S_S }[/math]
נפתח את שני צידי המשוואה לקבל [math]\displaystyle{ [T_B]^S_S=[I]^S_E[T_A]^S_S[I]^E_S=[I]^S_EA[I]^E_S }[/math] ומכאן נובע [math]\displaystyle{ A=[I]^E_S[T_B]^S_S[I]^S_E }[/math]
טענה: כל מטריצה הפיכה הינה מטריצת מעבר מקבוצת העמודות שלה, לבסיס הסטנדרטי (קל להוכיח).
לכן נמשיך, נסמן בF את קבוצת העמודות של המטריצה [math]\displaystyle{ [I]^S_E }[/math] וסה"כ נקבל [math]\displaystyle{ A=[I]^S_F[T_B]^S_S[I]^F_S=[T_B]^F_F }[/math] כפי שרצינו.
- טרנזיטיביות: נניח [math]\displaystyle{ B=[T_A]^E_E }[/math] וגם [math]\displaystyle{ C=[T_B]^F_F }[/math] לכן ביחד
[math]\displaystyle{ C=[T_B]^F_F=[I]^S_F[T_B]^S_S[I]^F_S=[I]^S_FB[I]^F_S=[I]^S_F[T_A]^E_E[I]^F_S= }[/math]
טענה: יהי בסיס E. אזי כל מטריצה הפיכה הינה מטריצת מעבר מבסיס כלשהו לבסיס E. ניקח את הצירופים הלינאריים של איברי E עם הסקלרים מעמודות המטריצה ההפיכה. מכיוון שעמודות המטריצה ההפיכה בת"ל, הקואורדינטות בת"ל ולכן גם הצירופים הלינאריים עצמם בת"ל ולכן מהווים בסיס המקיים את הדרוש.
נמשיך, [math]\displaystyle{ C=[I]^E_G[T_A]^E_E[I]^G_E=[T_A]^G_G }[/math] כפי שרצינו.
על מנת להוכיח שפונקצית הtrace מוגדרת היטב יש להראות שהיא שווה על כל שתי מטריצות שקולות. אבל זה קל כיוון ש
[math]\displaystyle{ tr(B)=tr([I]^S_EA[I]^E_S)=tr(A[I]^S_E[I]^E_S)=tr(A) }[/math]