בדידה לתיכוניסטים תש"ע - שאלות ותשובות
[math]\displaystyle{ {n \choose k} = {n!\over k!(n-k)!} }[/math]
הוראות
כאן המקום לשאול שאלות. כל שעליכם לעשות הוא ללחוץ על [עריכה] (משמאל לכותרת "שאלות"), להוסיף בתחילת הדף את השורה הבאה:
== כותרת לשאלה ==
לכתוב מתחתיה את שאלתכם, וללחוץ על שמירה למטה מימין
הודעה חשובה !!! - יש להגיש את התרגילים הנוספים (13 , ו 14 כרשות למי שמגיש ) עד ,וכולל , 16.9.2010 ! למשל לתא הבודקת הילה הלוי בכר , או לתומר ביום רביעי או לניר ביום חמישי - בתרגולי החזרה . אנא הודיעו למי שאתם יודעים שלא יגיע לתרגולים אלו . תודה:)
ארכיון
ארכיון 1 - תרגיל 1
ארכיון 2 - תרגיל 2
ארכיון 3 - תרגיל 3
ארכיון 4 - תרגיל 4
ארכיון 5 - לקראת המבחן
שאלות
הרכבה ריקה
אם [math]\displaystyle{ S={(a,b)} }[/math] ו-[math]\displaystyle{ R={(b,c)} }[/math] אז S הרכבה R זו קבוצה ריקה, או "לא קיים"?
סריג
אפשר בבקשה דוגמה לסריג?
שאלה על אחת השאלות פה
מה זה: "מספר היחסים על קבוצה בעלת n איברים"? מה הכוונה?
- מספר היחסים מA לA (למשל "קטן מ" בקבוצה של מספרים)
- תודה. הכוונה לכל יחס אפשרי? אז יש אינסוף! למשל: קטן, גדול, מקיים [math]\displaystyle{ a-b \in Z }[/math], מקיים [math]\displaystyle{ a^2=b }[/math] ועוד ועוד ועוד... נראה לי שלא הבנתי.
- ולמה זה הגודל של [math]\displaystyle{ P(A \times A) }[/math]?
- העובדה שרשמת שלוש נקודות לא את הופכת הרשימה לאינסופית. יחס, כפי שלמדתם, הוא תת קבוצה של [math]\displaystyle{ A\times A }[/math]. הרי בין כל זוג סדור של איברים מהקבוצה יכול להתקיים היחס או לא להתקיים. היחס הוא הקבוצה של כל הזוגות הסדורים בינהם מתקיים היחס. בפרט, כל קבוצה המוכלת ב[math]\displaystyle{ A\times A }[/math] מהווה יחס אחד. אוסף כל היחסים הינו אוסף כל תתי הקבוצות הנ"ל וזה בדיוק [math]\displaystyle{ P(A\times A) }[/math]. ארז שיינר 15:15, 4 בספטמבר 2010 (IDT)
- אההה.. הבנתי. תודה! (ומה שאני רשמתי הוא אמנם אינסופי, כי למשל [math]\displaystyle{ a^n=b }[/math] לכל [math]\displaystyle{ n \in N }[/math] הוא יחס נפרד, אבל יש שם יחסים שקולים כי הקבוצה סופית).
- בדיוק, ומעל קבוצה אינסופית כמו השלמים בהחלט יש אינסוף יחסים. ארז שיינר 15:38, 4 בספטמבר 2010 (IDT)
- אההה.. הבנתי. תודה! (ומה שאני רשמתי הוא אמנם אינסופי, כי למשל [math]\displaystyle{ a^n=b }[/math] לכל [math]\displaystyle{ n \in N }[/math] הוא יחס נפרד, אבל יש שם יחסים שקולים כי הקבוצה סופית).
- העובדה שרשמת שלוש נקודות לא את הופכת הרשימה לאינסופית. יחס, כפי שלמדתם, הוא תת קבוצה של [math]\displaystyle{ A\times A }[/math]. הרי בין כל זוג סדור של איברים מהקבוצה יכול להתקיים היחס או לא להתקיים. היחס הוא הקבוצה של כל הזוגות הסדורים בינהם מתקיים היחס. בפרט, כל קבוצה המוכלת ב[math]\displaystyle{ A\times A }[/math] מהווה יחס אחד. אוסף כל היחסים הינו אוסף כל תתי הקבוצות הנ"ל וזה בדיוק [math]\displaystyle{ P(A\times A) }[/math]. ארז שיינר 15:15, 4 בספטמבר 2010 (IDT)
שאלה 3 2008 מועד ב' סעיף ב'
אני לא מאמין, כתבתי עכשיו עשרות שורות של הפתרון שלי כדי לשאול אם הוא נכון, אבל זה נמחק לי =[. אז פשוט אשאל, אם אפשר, בבקשה, פתרון נכון לשאלה 3 סעיף ב', איזה פונקציה חח"ע ועל אפשר לעשות? זו שאלה קשה אז אני בטוח שיש עוד הרבה שירצו גם פתרון. תודה!!
- אני גם בדיוק עושה אותה אבל יש לי דרך תיאורטית שאני לא בטוח שהיא נכונה. הרי יודעים שK בין 2 ל2 בחזקת ג, אם מראים שבשני מקרי הקצה של K הוא שווה ל2 בחזקת ג זה לא מספיק כדי להוכיח שוויון תמידי? זה קצת מוזר שלסעיף הזהיש 5 נקודות ולסעיף הראשון יש 10, הוא הרבה יותר קל
- מצטערת בשבילך שהכל נמחק, בפעם הבאה אחרי כל כמה שורות תעתיק את כל מה שכתבת ואז תוכל להדביק במקרה הצורך.
שאלה 2 מועד ב' 2008
יש לי פתרון אבל אשמח מאם מישהו (עדיף מתרגל) ייתן את הפתרון כדי שאני אהיה בטוח, אני אנסה לכתוב את הפתרון שלי כאן: [math]\displaystyle{ (-1)^n*{1519-101n \choose 20} }[/math][math]\displaystyle{ {1519 \choose 20} + \sum_{n=1}^{14} }[/math] שיאללה אני לא מאמין שהצלחתי לכתוב את זה
- אני לא מתרגל, יצא לי דומה לשלך רק שהכנסתי את הגורם הראשון לתוך הסכום, וגם נראה לי שצריך להוסיף כמה פעמים כל חיתוך של קבוצות מופיע, למשל יש 2 מתוך 20 פעמים חיתוך 2 Ai ים (אם עשית את זה בעיקרון הכלה והדחה וצריך לצאת בערך כמו שלך רק עם i מתוך 20 בתוך הסכום
- כן כן שמתי לב לזה עכשיו, כתבתי את החלק של הכמה יש מתוך בדף אבל התלהבתי כל כך שהצלחתי לכתוב את זה באתר ששכחתי להוסיף, התוצאה שלי היא כזאת:
[math]\displaystyle{ ((-1)^n*{1519-101n \choose 20}*{20 \choose n}) }[/math][math]\displaystyle{ {1519 \choose 20} + \sum_{n=1}^{14} }[/math]
האמת שעכשיו אני לא בטוח אם זה צריך להיות [math]\displaystyle{ {1519-101n \choose 20} }[/math] או [math]\displaystyle{ {1519-101n \choose 20-n} }[/math]
איך להוכיח (2008 מועד ב' שאלה 1 א')
האם אפשר להוכיח ככה, או שיש דרך אחרת? נניח [math]\displaystyle{ f(x1,u1)=f(x2,u2) }[/math] וכן [math]\displaystyle{ f(x1,u1)={v1 (muchal-be) u1 | x1 (shayach-le) v1}, f(x2,u2)=cmo-x1,u1 }[/math] ולכן לכל V1, V2 שמוכלים בU1, U2 מתקיים V1=V2 ולכן U1=U2 וגם x1=x2? משהו לא נכון בהוכחה הזאת נכון? אז איך מוכיחים? תודה!
שאלות 2א+ב מועד ב 2009
שלום רב, כיצד עליי לנמק בפתרון השאלה 2א? התחלתי את הפתרון כך:
"ישנם [math]\displaystyle{ n }[/math] מספרים בקבוצה ולכן סך כל האפשרויות לתמורות שונות הוא [math]\displaystyle{ n! }[/math]. כמו כן קיבלנו שתי אפשרויות:
1. [math]\displaystyle{ n }[/math] לפני [math]\displaystyle{ n-1 }[/math]
2. [math]\displaystyle{ n }[/math] אחרי [math]\displaystyle{ n-1 }[/math]"
השאלה שלי היא איך אני מנמק לאחר מכן שקיימות [math]\displaystyle{ 0.5n! }[/math] תמורות כנדרש:
1. "...לכן לכל תמורה שתי אפשרויות ולכן בסה"כ יש [math]\displaystyle{ 0.5n! }[/math] תמורות שעונות לתנאי זה".
2. "כעת נגדיר [math]\displaystyle{ A }[/math] קבוצת כל התמורות העונות על תנאי 1, [math]\displaystyle{ B }[/math] קבוצת כל התמורות העונות על תנאי 2. כמו כן נגדיר פונקציה [math]\displaystyle{ f:A-\gt B }[/math] ע"י לכל [math]\displaystyle{ x }[/math] ב-[math]\displaystyle{ A }[/math] יתקיים ש[math]\displaystyle{ f(x)=y }[/math]כאשר [math]\displaystyle{ y }[/math] היא התמורה בה איברי [math]\displaystyle{ x }[/math] מופיעים בסדר הפוך (כלומר התמורה [math]\displaystyle{ 1,2 }[/math] תהפוך ל-[math]\displaystyle{ 2,1 }[/math]). פונקציה זו חח"ע ועל ולכן [math]\displaystyle{ |A|=|B| }[/math] ומכיוון שהחיתוך ביניהם זר הרי שאפשר לומר ש-[math]\displaystyle{ |A|+|B|=2|A|=|C| }[/math] (כאשר [math]\displaystyle{ C }[/math] היא קבוצת כל התמורות). נציב [math]\displaystyle{ |C|=n! }[/math] ונקבל את העוצמה הדרושה של [math]\displaystyle{ A }[/math]...".
הבעיה היא שדרך 1 נקראית לי לא מפורטת מספיק ודרך 2 היא די ארוכה. בסעיף א זה עוד נסבל אבל בסעיף ב זה בכלל נורא כי כבר קיימות 6 אפשרויות (ואז עליי לבנות 6 פונקציות) אז איך עליי לנמק את מה שאמרתי? תודה מראש, גל.
תשובה
אני לא מתרגל אך יש לי את הפתרון שאדם כתב באחד התרגולים שלו. כמו שאמרת, יש סך הכל [math]\displaystyle{ n! }[/math] אפשרויות לסדר את המספרים. ניתן לחלק מספר זה של אפשרויות ל2 חלקים: חלק ראשון הוא האפשרויות ש[math]\displaystyle{ n-1 }[/math] מופיע לפני [math]\displaystyle{ n }[/math] והחלק השני הוא ההפוך- [math]\displaystyle{ n }[/math] מופיע לפני [math]\displaystyle{ n-1 }[/math], ניתן לראות כי 2 חלקים אלה הם שווים, נניח אתה בודק את מספר האפשרויות בהן [math]\displaystyle{ n-1 }[/math] מופיע לפני [math]\displaystyle{ n }[/math], אז מספר האפשרויות ההפוך הוא אותו מספר כיוון שהפעם החלפת בכל אפשרות בין [math]\displaystyle{ n }[/math] ל[math]\displaystyle{ n-1 }[/math], ולכן התוצאה היא [math]\displaystyle{ 0.5n! }[/math]. בסעיף ב' אתה משתמש בתוצאה של סעיף א' ואתה יודע שהיא מתחלקת ל-3 אפשרויות ובאותו אופן כמו בסעיף א' גם 3 אפשרויות אלה הן שוות ולכן בסך הכל התוצאה היא [math]\displaystyle{ 1/6n! }[/math]. אני שוב אומר שאני לא מתרגל אבל זאת הדרך בה אדם פתר את התרגיל הזה
שאלה קצרצרה נוספת
מספר היחסים על קבוצה בעלת n איברים, זה בעצם מספר הפונקציות מA לA, כלומר n בחזקת n? או משהו אחר? תודה!
תשובה
מספר היחסים על קבוצה A בת n איברים היא הגודל של [math]\displaystyle{ P(A \times A) }[/math], שהיינו [math]\displaystyle{ 2^{n^2} }[/math]. Adam Chapman 11:57, 4 בספטמבר 2010 (IDT)
שאלה קצרה מאוד על עוצמות
קבוצת כל הפונקציות מהטבעיים לקבוצת תת הקבוצות של הטבעיים, מהי עוצמתה? לפי החישוב שלי, הקבוצה שווה לP)N( בחזקת N, כלומר העוצמה שווה ל-א בחזקת א0. אך מהי העוצמה א בחזקת א0? א? או יותר, 2 בחזקת א? איך אפשר לדעת את זה? תודה רבה!
תשובה
ישנן כמה נוסחאות לגבי עוצמות אינסופיות שצריך לדעת. אחת מהן היא שאם [math]\displaystyle{ k }[/math] אינסופית ו[math]\displaystyle{ \lambda\lt k }[/math] אזי [math]\displaystyle{ k^\lambda=k }[/math]. Adam Chapman 11:29, 4 בספטמבר 2010 (IDT)
3 שאלות על הרכבת פונקציות
-אם [math]\displaystyle{ g*f=Id }[/math] אז [math]\displaystyle{ g(f(x))=x }[/math] או ש [math]\displaystyle{ f(g(x))=x }[/math]? כי ניתקלתי בבעיה שקשורה לזה (השאלה השניה). -אפשר להגיד ש אם F חחע אז F הפיכה משמאל ואם F על אז היא הפיכה מימין, נכון? -איך מוכיחים את מה שצריך להוכיח בשאלה 2 במבחן 2007 מועד א' (http://math-wiki.com/images/4/4f/BdidaExamMoedA2007.pdf) ?
- ב-א', הוכחתי את הכיוון משמאל לימין, ע"י כך שאם g1*f=g2*f אז בגלל שf הפיכה מימין אז נרכיב את f-1 מימין ואז g1=g2. בכיוון השני נתקעתי.
- ב-ב', לא הצלחתי בכלל. התחלתי ככה: צריך להוכיח שf חחע, כלומר או שנוכיח שאם f(a1)=f(a2) אז a1=a2 או שנוכיח שהיא הפיכה משמאל (לא בטוח מה עדיף). הפונקציה הזאת שמסומנת בסימון של קבוצה ריקה היא על ולכן והפיכה מימין, ולכן O*h=Id ולכן (ופה נתקעתי, לא הייתי בטוח [math]\displaystyle{ O(h(x))=x }[/math] ולכן (?) [math]\displaystyle{ h(x)*f=x }[/math] ופה יש משהו לא הגיוני. אפשר עזרה? תודה!
תשובה
אם [math]\displaystyle{ g*f=Id }[/math] אז [math]\displaystyle{ g(f(x))=x }[/math].
בקשר לשאלה במבחן הנ"ל, הפיתרון הפשוט (לדעתי) של הסעיף הוא כדלקמן:
כיוון אחד
1) אם [math]\displaystyle{ f }[/math] חח"ע אזי היא הפיכה מימין ע"י איזושהי פונקציה שנסמנה [math]\displaystyle{ h : B \rightarrow A }[/math].
2) כעת, לכל פונקציה [math]\displaystyle{ \psi \in C^A }[/math] יש מקור [math]\displaystyle{ g=\psi \circ h \in C^B }[/math] לפי פונקציה [math]\displaystyle{ \Phi }[/math], כי [math]\displaystyle{ \Phi(g)=g \circ f=\psi \circ h \circ f=\psi }[/math] ולכן [math]\displaystyle{ \Phi }[/math] על.
כיוון שני
1) אם [math]\displaystyle{ f }[/math] לא חח"ע אז קיימים [math]\displaystyle{ a_1,a_2 \in A }[/math] שונים כך ש[math]\displaystyle{ f(a_1)=f(a_2) }[/math].
2) לכן לכל [math]\displaystyle{ g \in C^B }[/math], הפונקציה [math]\displaystyle{ \Phi(g)=g \circ f }[/math] מקיימת [math]\displaystyle{ g \circ f(a_1)=g \circ f(a_2) }[/math].
3) אולם, קיימות הפונקציות [math]\displaystyle{ h \in C^A }[/math] כך ש[math]\displaystyle{ h(a_1) \neq h(a_2) }[/math], כי [math]\displaystyle{ C }[/math] מכילה לפחות שני איברים, וכתצואה מכך [math]\displaystyle{ \Phi }[/math] איננה על.
Adam Chapman 11:25, 4 בספטמבר 2010 (IDT)
אם F חחע אז היא הפיכה משמאל, לא מימין, לא?
שאלה (קצת מוזרה, אבל מבלבלת) על איחוד קבוצות
נניח שX שייך לA חיתוך B חיתוך C. אני יכול להגיד בוודאות ש X שייך ל
- (AחיתוךBחיתוךC) איחוד (AחיתוךBחיתוךC'(משלים)) איחוד (AחיתוךB'חיתוךC') איחוד (A'חיתוךB'חיתוךC)? האם זה נכון בטוח בגלל שאחד מהגורמים באיחוד הוא A חיתוך B חיתוך C? תודה!
תשובה
כן. ניתן לומר זאת בודאות כי אחד הגורמים באיחוד הוא הוא A חיתוך B חיתוך C.
Adam Chapman 10:49, 4 בספטמבר 2010 (IDT)
- תודה רבה אני מאוד מעריך את כל העזרה שלך!!
עזרה (מבחן 2009 מועד ב' שאלה 7 ב'2 .)
הוכחתי את 1, ע"י חילוק למקרים, אם C=100 אז A וB יכולים להיות מ1 עד 99, 99 בריבוע אפשרויות, אם C=98 אז יש 98 בריבוע אפשרויות וכך הלאה ומקבלים את הסכום הדרוש. אבל לא משנה איך אני מנסה להסתכל על זה, אני לא רואה איך העוצמה של S שווה לתוצאה שכתובה ב2. אפשר עזרה לפני המבחן? תודה רבה!!
תשובה
את חלק ב' מוכיחים באופן קומבינטורי. כשיש לנו שלישיה סדורה [math]\displaystyle{ (a,b,c) }[/math] כך ש[math]\displaystyle{ a\lt b \wedge a\lt c }[/math] אז קורה אחד (ואחד בלבד) משלושת הדברים הבאים:1) [math]\displaystyle{ b=c }[/math] או 2) [math]\displaystyle{ b\lt c }[/math] או 3) [math]\displaystyle{ b\gt c }[/math]. כל המקרים ב1) מכוסים באופן חח"ע ועל על-ידי בחירת שני איברים מתוך 100, הצבת הקטן מבין השניים באינדקס הראשון והצבת הגדול מבין השניים באינדקסים השני והשלישי; כל המקרים ב2) מכוסים באופן חח"ע ועל על-ידי בחירת 3 איברים מתוך מאה, הצבת הקטן ביותר באינדקס הראשון, הצבת האמצעי באינדקס השני והצבת הגדול ביותר באינדקס השלישי; כל המקרים ב3) מכוסים באופן חח"ע ועל על-ידי בחירת 3 איברים מתוך מאה, הצבת הקטןביותר באינדקס הראשון, הצבת הגדול ביותר באינדקס השני והצבת האמצעי באינדקס השלישי. עקב כך, מקבלים את הנוסחה הרשומה בטופס המבחן בסעיף ב'.Adam Chapman 10:46, 4 בספטמבר 2010 (IDT)
- תודה
איחוד או חיתוך
סליחה שאני שואלת המון שאלות..
איך מוכיחים שאם X מוכלת ב-A חיתוך B אז X מוכלת ב-A וגם X מוכלת ב-B? (במיוחד צריך לשים לב שההוכחה לא מתאימה גם לאיחוד במקום חיתוך, בשונה מההוכחה אצלי במחברת)
שוב, תודה מראש!
שאלות זה טוב
אם [math]\displaystyle{ X \subseteq A \bigcap B }[/math] אז לכל [math]\displaystyle{ x \in X }[/math] מתקיים [math]\displaystyle{ x \in A \bigcap B }[/math], דהיינו [math]\displaystyle{ x \in A }[/math] וגם [math]\displaystyle{ x \in B }[/math]. מכיוון שלכל [math]\displaystyle{ x \in X }[/math] מתקיים [math]\displaystyle{ x \in A }[/math] אז [math]\displaystyle{ X \subseteq A }[/math], ומכיוון שלכל [math]\displaystyle{ x \in X }[/math] מתקיים [math]\displaystyle{ x \in B }[/math] אז [math]\displaystyle{ X \subseteq B }[/math]. Adam Chapman 00:16, 4 בספטמבר 2010 (IDT)
- תודה רבה, אבל: אם [math]\displaystyle{ X \subseteq A \bigcup B }[/math] אז לכל [math]\displaystyle{ x \in X }[/math] מתקיים [math]\displaystyle{ x \in A \bigcup B }[/math], דהיינו [math]\displaystyle{ x \in A }[/math] או [math]\displaystyle{ x \in B }[/math]. לכל [math]\displaystyle{ x \in X }[/math] מתקיים [math]\displaystyle{ x \in A }[/math] ואז*** [math]\displaystyle{ X \subseteq A }[/math], או [math]\displaystyle{ x \in B }[/math] ואז*** [math]\displaystyle{ X \subseteq B }[/math].
- מה שמסומן ב-*** כמובן לא נכון, אבל איך מסבירים את זה שהדבר נכון רק עבור חיתוך ולא איחוד?
- כל [math]\displaystyle{ x\in X }[/math] מקיים [math]\displaystyle{ x\in A }[/math] -או- [math]\displaystyle{ x\in B }[/math]. בפרט, מאד ייתכן שקיים [math]\displaystyle{ x\in X }[/math] כך ש[math]\displaystyle{ x\notin A }[/math]. אתה שינית לוגית את המשפט - במקום לומר 'כל איבר שייך לA או B' אמרת 'כל האיברים שייכים לA או כל האיברים שייכים לB'. ארז שיינר 01:18, 4 בספטמבר 2010 (IDT)
- באמת שיניתי לוגית את המשפט בלי לשים לב! אם כך, רק אם לכל [math]\displaystyle{ x \in X }[/math] מתקיים [math]\displaystyle{ x \in A }[/math] אז [math]\displaystyle{ X \subseteq A }[/math], ובאיחוד זה לא לכל x. הבנתי, תודה לכם!
הוכחה טריוויאלית
מהי הדרך הנכונה ביותר להוכיח שאם [math]\displaystyle{ P(A) }[/math] מוכל (או שווה) ב(ל)-[math]\displaystyle{ P(B) }[/math] אז A מוכל (או שווה) ב(ל)-B?
(פשוט ההוכחה אצלי במחברת לא ברורה לי)
תשובה
אם [math]\displaystyle{ P(A) \subseteq P(B) }[/math] אז לכל [math]\displaystyle{ X \in P(A) }[/math] מתקיים [math]\displaystyle{ X \in P(B) }[/math]. בפרט, [math]\displaystyle{ A \in P(A) }[/math] ולכן [math]\displaystyle{ A \in P(B) }[/math], כלומר [math]\displaystyle{ A \subseteq B }[/math]. Adam Chapman 23:57, 3 בספטמבר 2010 (IDT)
- אהה, תודה!
יחסים
האם האיבר הקטן ביותר הוא תמיד המינימלי היחיד? (כשהוא קיים)
תשובה
כן Adam Chapman 23:32, 3 בספטמבר 2010 (IDT)
- תודה!