תרגילי חובה לא סטנדרטיים
תרגילים שעלולים לשכוח ולא כדאי:
אלגברה לינארית
- חישוב הדטרמיננטה של מטריצת ונדרמונדה
- אין מטריצה אנטי-סימטרית הפיכה מממד אי-זוגי
חשבון אינפיניטיסימלי
חשבון במשתנה ממשי יחיד
- אי-שוויון הממוצעים
- הלמה של Fekete: אם [math]\displaystyle{ a_n }[/math] סדרה תת-אדיטיבית, אז ל-[math]\displaystyle{ \frac{a_n}{n} }[/math] יש גבול במובן הרחב השווה ל[math]\displaystyle{ \inf a_n }[/math]).
- המשפט של Stolz-Cesàro: אם [math]\displaystyle{ b_n }[/math] סידרה חיובית כך ש[math]\displaystyle{ \sum_n b_n=\infty }[/math] אז לכל סידרה [math]\displaystyle{ a_n }[/math], [math]\displaystyle{ \limsup \frac{a_n}{b_n}\ge\limsup\frac{\sum_{k=1}^n a_k}{\sum_{k=1}^n b_k}\ge\liminf \frac{\sum_{k=1}^n a_k}{\sum_{k=1}^n b_k}\ge \liminf \frac{a_n}{b_n} }[/math]
- סומביליות Cesàro: לכל סדרה מתכנסת גם סדרת הממוצעים החשבוניים מתכנסת ולאותו ערך, אבל יש סדרות שהממוצעים שלהן מתכנסים אולם הן לא.
- סומביליות Abel: אם הסכום [math]\displaystyle{ \sum_n a_n }[/math] קיים אז גם [math]\displaystyle{ \sum_{r\to 1^-} \sum a_n r^n }[/math] קיים ושווה לו; אבל יש טורים שאינם מתכנסים אלא באופן זה.
- קירוב Stirling.
- הלמה של Reimann-Lebesgue.
תורת החבורות
- יש אינסוף ראשוניים. יש אינסוף ראשוניים מהצורה 4n-1. יש אינסוף ראשוניים מהצורה 4n+1.