משפט המימדים
חזרה למשפטים בלינארית
משפט המימדים
יהי [math]\displaystyle{ V }[/math] מ"ו נוצר סופית ויהיו [math]\displaystyle{ U,W }[/math] תתי-מרחב של [math]\displaystyle{ V }[/math] . אזי:
- [math]\displaystyle{ \dim(U+W)=\dim(U)+\dim(W)-\dim(U\cap W) }[/math]
הוכחה
נסמן את הבסיס ל- [math]\displaystyle{ U\cap W }[/math] ב- [math]\displaystyle{ \{v_1,v_2,\dots,v_k\} }[/math] .
כיון ש- [math]\displaystyle{ U\cap W\subseteq U,W }[/math] , ניתן להשלים את בסיס החיתוך לבסיס ל- [math]\displaystyle{ U }[/math] ובאופן דומה לבסיס ל- [math]\displaystyle{ W }[/math] .
נסמן את הבסיסים ב- [math]\displaystyle{ \{v_1,\dots,v_k,u_1,\dots,u_p\},\{v_1,\dots,v_k,w_1,\dots,w_m\} }[/math] .
נסמן את איחוד הבסיסים ב- [math]\displaystyle{ B=\{v_1,\dots,v_k,u_1,\dots,u_p,w_1,\dots,w_m\} }[/math] , ונוכיח כי [math]\displaystyle{ B }[/math] הנו בסיס ל- [math]\displaystyle{ U+W }[/math] .
[math]\displaystyle{ B }[/math] פורש את [math]\displaystyle{ U+W }[/math]
יהי [math]\displaystyle{ u+w\in U+W }[/math] . אזי נציג את הוקטורים כצירוף לינארי של הבסיסים, [math]\displaystyle{ u+w=a_1v_1+\cdots+a_kv_k+b_1u_1+\cdots+b_pu_p+c_1v_1+\cdots+c_kv_k+d_1w_1+\cdots+d_mw_m }[/math].
ברור אם כך כי [math]\displaystyle{ u+w\in span(B) }[/math]
[math]\displaystyle{ B }[/math] בת"ל
ניקח צירוף לינארי מתאפס כלשהו של איברי B:
- [math]\displaystyle{ a_1v_1+...+a_kv_k+b_1u_1+...+b_pu_p+c_1w_1+...+c_mu_m=0 }[/math].
נסמן [math]\displaystyle{ v=a_1v_1+...+a_kv_k+b_1u_1+...+b_pu_p=-c_1w_1-...-c_mw_m }[/math]
ברור משני אגפי המשוואה כי [math]\displaystyle{ v\in U \and v\in W }[/math] ולכן [math]\displaystyle{ v\in U\cap W }[/math]
לכן ל-v יש הצגה כצירוף לינארי של איברי הבסיס לחיתוך, [math]\displaystyle{ v=d_1v_1+...+d_kv_k }[/math].
כמו כן, ל-v יש הצגה יחידה כצירוף לינארי של איברי הבסיס של U ולכן מתקיים:
- [math]\displaystyle{ v=d_1v_1+...+d_kv_k+0\cdot u_1+...+0\cdot u_p = a_1v_1+...+a_kv_k+b_1u_1+...+b_pu_p }[/math]
ולכן [math]\displaystyle{ b_1=b_2=...=b_p=0 }[/math].
כעת קיבלנו כי [math]\displaystyle{ a_1v_1+...+a_kv_k+c_1w_1+...+c_mu_m=0 }[/math],
אבל זה צירוף לינארי של איברי הבסיס של W ולכן הוא טריוויאלי.
מכאן שהצירוף הלינארי היחיד שמתאפס של איברי B הינו הטריוויאלי ולכן B בת"ל.
ספירת מימדים וסיכום
מצאנו, איפוא, בסיסים לכל תתי המרחבים המוזכרים במשפט, נותר רק לוודא שאכן הנוסחא עובדת:
[math]\displaystyle{ dim(U+W)=k+p+m=k+p+k+m-k=dim(U)+dim(W)-dim(U\cap W) }[/math]