שינויים

קפיצה אל: ניווט, חיפוש

גבול פונקציה

נוספו 1,901 בתים, 01:35, 16 ביוני 2017
[[88-132 אינפי 1 סמסטר א' תשעב/מערך תרגול/פונקציות|חזרה לפונקציות]]
כאשר למדנו גבולות של סדרות, היה רק כיוון אחד להתקדמות הסדרה- האינדקס שאף לאינסוף דרך הטבעיים. כאשר מדובר על פונקציה, <math>x </math> יכול לשאוף לכל מספר ממשי וגם לפלוס ומינוס אינסוף. בנוסף הוא עשוי לשאוף אליהם דרך מספרים רציונאליים, אי רציונאליים או גם וגם. עלינו להתאים את הגדרת הגבול של פונקציה בהתאם.
==גבול פונקציה לפי קושי==
<font size=4 color=#3c498evideoflash>'''הגדרה.''' Jp5FqgylIak</font>L נקרא '''הגבול של f בנקודה a''' אם f מוגדרת בסביבה מנוקבת של a וגם לכל <math>\epsilon>0</math> קיים <math>\delta>0</math> כך שלכל x המקיים <math>0<|x-a|<\delta</math> מתקיים <math>|f(x)-L|<\epsilon</mathvideoflash>
;<font size=4 color=#3c498e>הגדרה.</font>
<math>L</math> נקרא '''הגבול של <math>f</math> בנקודה <math>a</math>''' אם <math>f</math> מוגדרת בסביבה מנוקבת של <math>a</math> וגם לכל <math>\varepsilon>0</math> קיים <math>\delta>0</math> כך שלכל <math>0<|x-a|<\delta</math> מתקיים <math>\Big|f(x)-L\Big|<\varepsilon</math> .
(הערה: סביבה מנוקבת של <math>a הינה </math> הנה סביבה של <math>a </math> שמוציאים ממנה את <math>a</math> .)
הסבר ההגדרה: לכל מרחק על ציר <math>y</math> שנבחר (אפסילון) יש מרחק על ציר <math>x</math> (דלתא) כך שאם הנקודות על ציר <math>x</math> קרובות מספיק ל-<math>a</math> אזי הפונקציה עליהן קרובה מספיק ל-<math>L</math> .
הסבר ההגדרה: לכל מרחק על ציר y שנבחר (אפסילון) יש מרחק על ציר x (דלתא) כך שאם הנקודות על ציר x קרובות מספיק ל-a אזי הפונקציה עליהן קרובה מספיק ל-L.
;<font size=4 color=#a7adcd>תרגיל.</font>
הוכח לפי ההגדרה כי <math>\lim\limits_{x\to2}\dfrac{(x+2)(x+4)}{x+1}=8</math>
;פתרוןיהי <font size=4 color=#a7adcdmath>\varepsilon>'''תרגיל.''' 0</fontmathהוכח לפי ההגדרה . צריך להוכיח כי קיים <math>\lim_{x\rightarrow 2}\frac{(x+2)(x+4)}{x+1}=8delta>0</math> '''פתרון.'''יהי אפסילון גדול מאפס. צריך להוכיח כי קיים דלתא גדול מאפס, כך שאם <math>0<|x-2|<\delta</math> אזי מתקיים <math>\Bigleft|\fracdfrac{(x+2)(x+4)}{x+1}-8\Bigright|<\epsilonvarepsilon</math>
נפתח את הביטוי:
:<math>\left|\frac{(x+2)(x+4)}{x+1}-8\right|=\left|\frac{x^2+6x+8-8x-8}{x+1}\right|=\left|\frac{x^2-2x}{x+1}\right|=\left|\frac{x(x-2)}{x+1}\right|</math>
אנו רואים כי כאשר <math>x\to2</math> המונה שואף ל-0 והמכנה ל-3. נרצה, אם כך, לחסום את המכנה מלמטה על-ידי קבוע גדול מ-0, כך נוכל להקטין את המכנה, ולהגדיל את הביטוי.
::<math>\Big|\frac{(x+2)(x+4)}{x+1}-8\Big|=\Big|\frac{x^2+6x+8-8x-8}{x+1}\Big|=\Big|\frac{x^2-2x}{x+1}\Big|=\Big|\frac{x(x-2)}{x+1}\Big|</math>  אנו רואים כי כאשר x שואף ל-2 המונה שואף לאפס, והמכנה ל-3. נרצה, אם כך, לחסום את המכנה מלמטה על ידי קבוע גדול מאפס, כך נוכל להקטין את המכנה, ולהגדיל את הביטוי. כאשר <math>\delta<1</math>, עבור <math>0<|x-2|<\delta<1</math> מתקיים <math>2<x+1</math> ולכן:  ::<math>\Bigleft|\fracdfrac{x(x-2)}{x+1}\Bigright|<\fracdfrac{|x(x-2)|}{2}</math>  
כמו כן, מתקיים <math>x<3</math> ולכן:
:<math>\left|\dfrac{x(x-2)}{x+1}\right|<\dfrac{3|x-2|}{2}<\dfrac32\delta</math>
לסיכום, קיים דלתא כך ש- <math>\delta<1</math> וגם <math>\delta<\dfrac23\varepsilon</math> עבורו מתקיים:
:<math>\left|\dfrac{(x+2)(x+4)}{x+1}-8\right|<\dfrac32\delta=\varepsilon</math>
::==גבול פונקציה לפי היינה==<mathvideoflash>\Big|\frac{x(x-2)}{x+1}\Big|<\frac{3|x-2|}{2}<\frac{3}{2}\deltawb7n_n5F8iU</mathvideoflash>
 
לסיכום, קיים דלתא כך ש <math>\delta<1</math> וגם <math>\delta<\frac{2}{3}\epsilon</math> עבורו מתקיים:
 
 
::<math>\Big|\frac{(x+2)(x+4)}{x+1}-8\Big|<\frac{3}{2}\delta=\epsilon</math>
 
 
==גבול פונקציה לפי היינה==
בהגדרת קושי לגבול פונקציה הכללנו את הרעיון של גבול של סדרה, אך לא השתמשנו בו. בהגדרת הגבול לפי היינה נסתמך על הגדרת הגבול של סדרה.
<font size=4 color=#3c498e>'''הגדרה.''' </font>
<math>L</math> נקרא '''הגבול של <math>f</math> בנקודה <math>a</math>''' אם <math>f</math> מוגדרת בסביבה מנוקבת של <math>a</math> וגם לכל סדרה <math>x_n</math> המקיימת את שני התנאים הבאים:
*<math>\forall n:x_n\ne a</math>
*<math>\lim_{n\to\infty}x_n=a</math> (כאשר זהו גבול של סדרות)
מתקיים כי הסדרה <font size=4 color=#3c498emath>'''הגדרה.''' </font>L נקרא '''הגבול של f בנקודה a''' אם f מוגדרת בסביבה מנוקבת של a וגם לכל סדרה <math>(x_n)</math> המקיימת את שני התנאים הבאים:*שואפת ל- <math>\forall n:x_n\neq a</math>*<math>\lim_{n\rightarrow\infty}x_n=aL</math> (כאשר זהו שוב, גבול של סדרות).
מתקיים כי הסדרה <mathfont size=4 color=#a7adcd>f(x_n)'''תרגיל.'''</mathfont> שואפת ל-L (שוב, גבול של סדרות).
הוכח כי <font sizemath>\lim\limits_{x\to x_0}ax^k=4 color=#a7adcd>'''תרגיל.''' ax_0^k</fontmath>
הוכח כי '''פתרון.'''לכל סדרה <math>x_0\lim_{xne x_n\rightarrow to x_0}</math> מתקיים לפי אריתמטיקת גבולות של סדרות כי:<math>ax^k=a\cdot x\cdots x\to a\cdot x_0\cdots x_0=ax_0^k</math>
'''מסקנה.''' קל להראות כי לכל פולינום p מתקיים <math>\lim\limits_{x\to x_0}p(x)=p(x_0)</math>
<font size=4 color=#a7adcd>'''פתרוןתרגיל.'''לכל סדרה <math>x_0\neq x_n\rightarrow x_0</mathfont> מתקיים לפי אריתמטיקת גבולות של סדרות כי
::הוכח כי לא קיים הגבול <math>ax^k=a\cdot x lim\cdots limits_{x\rightarrow ato 0}\cdot x_0 sin(e^{\cdots x_0 = ax_o^kfrac{1}{x}})</math>
'''הוכחה.''' נראה כי קיימות סדרות
:<math>0\ne x_k,y_k\to 0</math>
'''מסקנה.''' קל להראות כי לכל פולינום p מתקיים כך ש-:<math>\lim_{x\rightarrow x_0}plim f(xx_k)=p\ne\lim f(x_0y_k)</math>
נזכר בעובדה שלכל מספר שלם k מתקיים::<font sizemath>\sin\left(\frac{\pi}{2}+2\pi k\right)=4 color=#a7adcd>'''תרגיל.''' 1</fontmath>
הוכח כי לא קיים הגבול :<math>\lim_sin\left(\frac{x3\rightarrow 0pi}sin({2}+2\pi k\right)=-1</math>נרצה סדרה המקיימת:<math>e^\frac{1}{x_k}=\frac{\pi}{2}+2\pi k</math>ולכן ניקח:<math>x_k=\frac{1}{x\ln\Big(\frac{\pi}{2}+2\pi k\Big)}</math>באופן דומה ניקח:<math>y_k=\frac{1}{\ln\Big(\frac{3\pi}{2}+2\pi k\Big)}</math>ואז נקבל :<math>\lim f(x_k)=1\ne -1=\lim f(y_k)</math>
==גבולות ידועים==
:<math>\lim_{x\to 0}\frac{\sin(x)}{x}=1</math>
'''הוכחה.''' נראה כי קיימות סדרות::<math>\lim_{x\to 0}\neq x_k,y_kfrac{1-\rightarrow cos(x)}{x}=0</math>
כך ש::<math>\lim f(x_k)lim_{x\neq to 0}\lim ffrac{1-\cos(y_kx)}{x^2}=\frac{1}{2}</math>
:<math>\lim_{x\to 0}\frac{\ln(1+x)}{x}=1</math>
נזכר בעובדה שלכל מספר שלם k מתקיים==דוגמאות==חשב את הגבולות הבאים:*<math>\lim_{x\to 0}\frac{1-\cos(x)}{\sin(x)}</math>'''פתרון'''::<math>\lim_{x\to 0}\frac{1-\cos(x)}{\sin(x)}=\Biglim_{x\to 0}\frac{1-\cos(x)}{\sin(x)}\cdot\frac{x}{x}=\pilim_{x\to 0}\frac{21-\cos(x)}{x}+2\pi kfrac{x}{\Bigsin(x)}=0\cdot 1=0</math>
::<math>sin\Big(\frac{3\pi}{2}+2\pi k\Big)=-1</math>
*<math>\lim_{x\to 0}\frac{5x^2+2x}{3x^3+2x^2+x}</math>
'''פתרון''':
:<math>\lim_{x\to 0}\frac{5x^2+2x}{3x^3+2x^2+x}=\lim_{x\to 0}\frac{x(5x+2)}{x(3x^2+2x+1)}=\lim_{x\to 0}\frac{5x+2}{3x^2+2x+1}=2</math>
נרצה סדרה המקיימת'''הערה''': שימו לב שכאשר המשתנה שואף לאפס, החזקה המשמעותית היא דווקא '''הנמוכה''' בניגוד לכאשר המשתנה שואף לאינסוף.
::<math>e^{\frac{1}{x_k}}=\frac{\pi}{2}+2\pi k</math>
*<math>\lim_{x\to\infty}x\sin\left(\tfrac{1}{x}\right)</math>'''פתרון''': נבצע הצבה <math>y=\frac{1}{x}</math> ולכן ניקחזה בעצם שווה לגבול:<math>\lim_{x\to\infty}x\sin\left(\tfrac{1}{x}\right)=\lim_{y\to 0^+}\frac{\sin(y)}{y}=1</math>
::<math>x_k=\frac{1}{ln\Big(\frac{\pi}{2}+2\pi k\Big)}</math>
באופן דומה ניקח::*<math>y_k=\fraclim_{1x\to 0}{lnx\Bigsin\left(\fractfrac{3\pi1}{2x}+2\pi k\Bigright)}</math>'''פתרון''': שואפת לאפס כפול חסומה, לכן הגבול הנו <math>0</math> .
ואז נקבל *<math>f(x)=\begin{cases}x^2 & x\in\Q \\ 0 & x\notin\Q\end{cases}</math>
::הראנו בסרטון על הגדרת הגבול לפי סדרות (לעיל) כי גבול פונקציה זו קיים אך ורק בנקודה <math>\lim f(x_k)=1\neq -1 =\lim f(y_k)0</math> וערכו שם הוא <math>0</math>.
226
עריכות