שינויים

קפיצה אל: ניווט, חיפוש

המשפט היסודי של החשבון האינטגרלי

נוספו 3 בתים, 12:37, 4 בנובמבר 2016
/* סעיף ב' */
=== סעיף ב'===
כאן מניחים ש- <math>f(t)</math> רציפה בנקודה <math>x_0\in[a,b]</math> כלשהי. אנחנו צריכים להוכיח כי <math>A'(x_0)</math> קיימת ושווה ל- <math>f(x_0)</math> . נחזור לפונקציה <math>A(x+\Delta x)-A(x)=\displaystyle\int\limits_x^{x+\Delta x}f(t)dt</math>. בעצם, אנחנו צריכים להוכיח כאן שכאשר <math>\Delta x\to 0</math> , מתקיים בהכרח:
<math>\frac{A(x_0+\Delta x)-A(x_0)}{\Delta x}=\frac1{\Delta x}\displaystyle\int\limits_{x_0}^{x_0+\Delta x}f(t)dt\to f(x_0)</math>
כעת נראה כי הביטוי מתאפס: <math>\lim\limits_{\Delta x\to 0}\Bigg[\frac1{\Delta x}\displaystyle\int\limits_{x_0}^{x_0+\Delta x}[f(t)-f(x_0)]dt\Bigg]=0</math>
יהי <math>\epsilon>0</math>. כיון ש- <math>f</math> רציפה, קיים <math>\delta>0</math> כך שאם <math>|t-x_0|<\delta</math> אז <math>\Big|f(t)-f(x_0)\Big|<\epsilon</math> . כעת נניח <math>|\Delta x|<\delta</math> , לכן לכל t כזה: <math>|t-x_0|\le|\Delta x|<\delta</math> כך ש-<math>\Big|f(t)-f(x_0)\Big|<\epsilon</math> .
מכאן ש- <math>\Bigg|\displaystyle\int\limits_{x_0}^{x_0+\Delta x}[f(t)-f(x_0)]dt\Bigg|\le\displaystyle\int\limits_{x_0}^{x_0+\Delta x}\Big|f(t)-f(x_0)\Big|dt< \displaystyle\int\limits_{x_0}^{x_0+\Delta x}\epsilon\cdot dt</math>
<math>\Bigg|\frac1{\Delta x}\displaystyle\int\limits_{x_0}^{x_0+\Delta x}[f(t)-f(x_0)]dt\Bigg|<\frac{1}{|\Delta x|}\cdot\epsilon|\Delta x|=\epsilon</math> .
ולכן הגבול אכן שואף ל- <math>0</math>, מה שמעיד על כך שאגף ימין שואף ל- <math>f(x_0)</math> , ולכן, אגף שמאל גם שואף ל- <math>f(x_0)</math> , מכאן נובע <math>A'(x_0)=f(x_0)</math> .
<math>\blacksquare</math>
226
עריכות