שינויים

חדוא 1 - ארז שיינר

נוספו 1,743 בתים, 08:34, 16 באוקטובר 2020
/* חשבון גבולות (אריתמטיקה של גבולות) */
*המקרים הבעייתיים בהם צריך להפעיל מניפולציות אלגבריות או משפטים על מנת לחשב את הגבול:
**<math>\frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,0^0,\infty^0,1^\infty</math>
 
 
===סדרות מונוטוניות והמספר e===
*סדרה מונוטונית וחסומה מתכנסת.
*[[המספר e]] (הוכחות בעזרת [[אי-שוויון הממוצעים]]).
*<math>2<e<4</math>.
*אם <math>a_n\to\infty</math> אזי <math>\left(1+\frac{1}{a_n}\right)^{a_n}\to e</math>
**<math>[a_n]\leq a_n \leq [a_n]+1</math>, כאשר <math>[a_n]</math> הוא המספר השלם הגדול ביותר שקטן או שווה ל<math>a_n</math>.
**<math>\left(1+\frac{1}{[a_n]+1}\right)^{[a_n]}\leq\left(1+\frac{1}{a_n}\right)^{a_n}\leq \left(1+\frac{1}{[a_n]}\right)^{[a_n]+1}</math>
**שני הצדדים שואפים לe ולכן לפי כלל הסנדוויץ הסדרה אכן שואפת לe.
*אם <math>a_n\to -\infty</math> אזי <math>\left(1+\frac{1}{a_n}\right)^{a_n}\to e</math>
**ראשית <math>\left(1-\frac{1}{n}\right)^{n}\to \frac{1}{e}</math> (הוכחה בקישור לערך על המספר e).
**כעת חזקה שלילית הופכת את השבר, וניתן לסיים את ההוכחה באופן דומה להוכחה במקרה הקודם.
 
 
*אם <math>a_n\to 1</math> אזי <math>a_n^{b_n}\to e^{\lim b_n\cdot(a_n-1)}</math>
**<math>a_n^{b_n}=\left[\left(1+(a_n-1)\right)^{\frac{1}{a_n-1}}\right]^{ b_n\cdot (a_n-1)}</math>.
**<math>\left(1+(a_n-1)\right)^{\frac{1}{a_n-1}}\to e</math> בין אם <math>a_n-1</math> שלילי או חיובי, לפי הטענות לעיל.
**שימו לב שאם <math>a_n=1</math>, אז ממילא מקבלים 1 בנוסחא הסופית, ואז לא צריך לחלק ב<math>a_n-1</math> ששווה אפס.
 
 
*דוגמא:
**<math>\lim\left(\frac{n+1}{n-2}\right)^n=e^{\lim n\cdot\left(\frac{n+1}{n-2}-1\right)}=e^{\lim\frac{3n}{n-2}}=e^3</math>
==פרק 3 - טורים==