שינויים

חדוא 1 - ארז שיינר

נוספו 7,132 בתים, 08:47, 16 באוקטובר 2020
/* פרק 5 - גזירות */
==פרק 5 - גזירות==
 
<videoflash>7FYVQ_fGyNE</videoflash>
 
 
===הגדרת הנגזרת===
*<math>f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}</math>
*<math>\lim{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} =\{h=x-x_0\} = \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}</math>
**הסבר לגבי שיטת ההצבה בה השתמשנו לעיל:
**נניח כי <math>\lim{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}=f'(x_0)</math> ונוכיח כי <math>\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)</math>, והוכחה דומה בכיוון ההפוך.
**תהי <math>x_0\neq x_n\to x_0</math> נגדיר את הסדרה <math>0\neq h_n=x_n-x_0\to 0</math>.
**כיוון ש<math>\frac{f(x_0+h_n)-f(x_0)}{h_n}\to f'(x_0)</math> נובע כי <math>\frac{f(x_n)-f(x_0)}{x_n-x_0}\to f'(x_0)</math>.
*אם f גזירה בנקודה, היא רציפה בנקודה:
**צ"ל <math>\lim_{x\to x_0}f(x)=f(x_0)</math>
**לפי אריתמטיקה של גבולות זה שקול ל <math>\lim_{x\to x_0}f(x)-f(x_0)=0</math>
**לפי עקרון win (קיצור של wouldn't it be nice?) מתקיים כי <math>\lim_{x\to x_0}f(x)-f(x_0)=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\cdot (x-x_0)=f'(x_0)\cdot 0 = 0</math>
*פונקציה הערך המוחלט אינה גזירה באפס
**<math>(|x|)'(0) = \lim_{h\to 0}\frac{|h|-|0|}{h}=\lim\frac{|h|}{h}</math> וגבול זה אינו קיים, כיוון שהגבולות החד צדדים שונים.
**ניתן לשים לב גם ש<math>|x|=\sqrt{x^2}</math>, וכמו כן נראה בהמשך כי<math>\sqrt{x}</math> אינה גזירה באפס.
 
===הנגזרות של הפונקציות האלמנטריות===
*טריגו:
**<math>\lim_{h\to 0}\frac{1-cos(h)}{h}=\lim_{h\to 0}\frac{sin^2(h)}{h(1+cos(h))}=\lim_{h\to 0}sin(h)\cdot \frac{sin(h)}{h}\cdot \frac{1}{1+cos(h)}=0\cdot 1 \cdot \frac{1}{2}=0</math>
**<math>(sin(x))'=\lim_{h\to 0}\frac{sin(x+h)-sin(x)}{h}=\lim_{h\to 0}\frac{sin(x)cos(h)+sin(h)cos(x)-sin(x)}{h}=\lim_{h\to 0}sin(x)\cdot \frac{cos(h)-1}{h} + cos(x)\cdot \frac{sin(h)}{h}=cos(x)</math>
**באופן דומה <math>(cos(x))'=-sin(x)</math>
*לוג:
**<math>\lim_{h\to 0}\frac{log(1+h)}{h}=\lim_{h\to 0}\frac{1}{h}\cdot log(1+h)=\lim_{h\to 0}log\left(\left(1+h\right)^{\frac{1}{h}}\right)=log(e)</math>
***המעבר האחרון נובע מהעובדה שפונקצית הלוג רציפה.
***(בפרט נובע כי <math>\lim_{x\to 0}\frac{ln(1+x)}{x}=1</math>.)
**<math>(log(x))'=\lim_{h\to 0}\frac{log(x+h)-log(x)}{h}= \lim_{h\to 0}\frac{log\left(\frac{x+h}{x}\right)}{h}=\lim_{h\to 0}\frac{1}{x}\cdot\frac{log\left(1+\frac{h}{x}\right)}{\frac{h}{x}}=\frac{log(e)}{x}</math>
***בפרט נובע כי <math>(ln(x))' = \frac{1}{x}</math>
*אקספוננט:
**<math>\lim_{h\to 0}\frac{a^h-1}{h} = \{t=a^h-1, h=log_a(1+t)\} = \lim_{t\to 0} \frac{t}{log_a(1+t)} = \frac{1}{log_a(e)} = \frac{1}{\frac{ln(e)}{ln(a)}}=ln(a)</math>
**<math>(a^x)' = \lim_{h\to 0}\frac{a^{x+h}-a^x}{h}= \lim_{h\to 0}a^x\cdot \frac{a^h-1}{h}=a^x\cdot ln(a)</math>
***בפרט נובע כי <math>(e^x)'=e^x</math>.
*חזקה:
**<math>(x^\alpha)'=\alpha x^{\alpha-1}</math> לכל <math>\alpha\in \mathbb{R}</math>, הוכחה בהמשך.
***בפרט:
***<math>(1)'=0</math>
***<math>(\frac{1}{x})' = (x^{-1})'=-\frac{1}{x^2}</math>
***<math>(\sqrt{x})'=(x^{\frac{1}{2}})'=\frac{1}{2\sqrt{x}}</math>
 
 
תהי f גזירה ב<math>x_0</math> ותהי g הגזירה ב<math>f(x_0)</math>:
*<math>(g\circ f)'(x_0) = \lim_{x\to x_0} \frac{g(f(x))-g(f(x_0))}{x-x_0}</math>
*תהי סדרה <math>x_0\neq x_n\to x_0</math>.
*רוצים לומר ש<math>\frac{g(f(x_n))-g(f(x_0))}{x_n-x_0}= \frac{g(f(x_n))-g(f(x_0))}{f(x_n)-f(x_0)}\cdot \frac{f(x_n)-f(x_0)}{x_n-x_0}\to g'(f(x_0))\cdot f'(x_0)</math>.
*אמנם <math>f(x_n)\to f(x_0)</math> בגלל שהרציפות נובעת מהגזירות, אבל לא ידוע ש<math>f(x_n)\neq f(x_0)</math> ובמקרה זה אנחנו כופלים ומחלקים באפס.
*אם יש תת סדרה <math>a_n</math> של <math>x_n</math> עבורה <math>f(a_n)=f(x_0)</math> אזי <math>\frac{f(a_n)-f(x_0)}{a_n-x_0}=0</math> ולכן <math>f'(x_0)=0</math>.
*לכן <math>g'(f(x_0))\cdot f'(x_0)=0</math>.
*כמו כן, <math>\frac{g(f(a_n))-g(f(x_0))}{a_n-x_0}=0</math>.
*לכן בכל מקרה קיבלנו כי <math>\frac{g(f(x_n))-g(f(x_0))}{x_n-x_0}\to g'(f(x_0))\cdot f'(x_0)</math>
*סה"כ <math>(g\circ f)'(x_0)=g'(f(x_0))\cdot f'(x_0)</math>.
 
 
===נגזרת של חזקה===
*עבור <math>x>0</math> מתקיים <math>(x^\alpha)'=(e^{ln\left(x^\alpha\right)})' = (e^{\alpha\cdot ln(x)})' = e^{\alpha\cdot ln(x)}\cdot \frac{\alpha}{x} = x^\alpha \cdot \frac{\alpha}{x} = \alpha x^{\alpha-1}</math>
*דוגמא: חישוב הנגזרת של <math>x^x</math>
 
===נגזרת מנה===
תהיינה f,g גזירות בנקודה x כך ש <math>g(x)\neq 0</math>:
*נזכור כי <math>(\frac{1}{x})'=-\frac{1}{x^2}</math>
*אזי בנקודה x מתקיים: <math>\left(\frac{f}{g}\right)'=\left(f\cdot \frac{1}{g}\right)' = f'\cdot \frac{1}{g} + f\cdot \frac{-g'}{g^2} = \frac{f'g-g'f}{g^2}</math>
 
 
===פונקציות הופכיות ונגזרתן===
 
*חזקות ולוגריתמים.
 
*פונקציות הפיכות (הוכחות והגדרות מדוייקות בבדידה).
**פונקציה <math>f:[a,b]\to [c,d]</math> הפיכה אם"ם היא חח"ע ועל
**הפונקציה ההופכית היא <math>f^{-1}:[c,d]\to[a,b]</math> ומתקיים כי <math>f(x)=y</math> אם"ם <math>x=f^{-1}(y)</math>
 
 
*טענה: אם <math>f:[a,b]\to [c,d]</math> רציפה בקטע <math>[a,b]</math>, אזי <math>f^{-1}:[c,d]\to[a,b]</math> רציפה בקטע <math>[c,d]</math>.
**הוכחה:
**תהי <math>y_0\neq y_n\to y_0</math>, צ"ל ש <math>f^{-1}(y_n)\to f^{-1}(y_0)</math>
**יהי גבול חלקי <math>x_n=f^{-1}(y_n)\to L</math>.
**אזי <math>f(x_n)=y_n\to y_0</math>.
**מצד שני, לפי רציפות הפונקציה f מתקיים <math>f(x_n)\to f(L)</math>.
**לכן <math>f(L)=y_0</math> ולכן <math>L=f^{-1}(y_0)</math>.
 
 
*טענה: תהי <math>f:[a,b]\to [c,d]</math> הפיכה ורציפה. ונניח כי היא גזירה בנק' <math>a<x_0<b</math> כך ש <math>f'(x_0)\neq 0</math>.
:אזי <math>f^{-1}</math> גזירה בנק' <math>f(x_0)</math> ומתקיים כי
:<math>(f^{-1})'(f(x_0))=\frac{1}{f'(x_0)}</math> או בנוסח אחר-
:<math>(f^{-1})'(x)=\frac{1}{f'(f^{-1}(x))}</math>
**הוכחה:
**<math>(f^{-1})'(f(x_0)) = \lim_{y\to f(x_0)}\frac{f^{-1}(y)-f^{-1}(f(x_0))}{y-f(x_0)}</math>
**תהי <math>f(x_0)\neq y_n\to f(x_0)</math> ונסמן <math>x_n=f^{-1}(y_n)</math>.
**אזי מתוך רציפות וחח"ע נובע כי <math>x_0\neq x_n\to f^{-1}(f(x_0))=x_0</math>
**<math>\frac{f^{-1}(y_n)-f^{-1}(f(x_0))}{y_n-f(x_0)} = \frac{x_n-x_0}{f(x_n)-f(x_0)} \to \frac{1}{f'(x_0)}</math>
 
 
*דוגמא חשובה:
*<math>tan:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}</math> הפיכה וההופכית שלה נקראית <math>arctan</math>.
*<math>tan^2(x)+1 = \frac{sin^2(x)}{cos^2(x)}+1 = \frac{1}{cos^2(x)}</math>
*<math>arctan'(x) = \frac{1}{\frac{1}{cos^2(arctan(x))}} = \frac{1}{tan^2(arctan(x))+1}=\frac{1}{1+x^2}</math>
==פרק 6 - חקירה==