שינויים

קפיצה אל: ניווט, חיפוש

חדוא 1 - ארז שיינר

נוספו 6,094 בתים, 20:38, 23 בנובמבר 2020
/* רציפות */
=מבחנים ופתרונות=
 
*[[מדיה:19CSInfi1dumbtest.pdf|מבחן לדוגמא תש"ף]]
*[[מדיה:19CSInfi1A.pdf|מבחן מועד א' תש"ף]]
**[[מדיה:19CSInfi1ASol.pdf|פתרון מבחן מועד א' תש"ף]]
=סרטוני ותקציר ההרצאות=
**<math>log_a(x^y)=y log_a(x)</math>
**<math>\log_a(x)=\frac{log_b(x)}{log_b(a)}</math>
**<math>log_a(x)=y</math> אם ורק אם <math>x=a^y</math>
===חסמים===
*<math>L</math> הינו גבול הסדרה <math>a_n</math> (מסומן <math>\lim a_n=L</math> או <math>a_n\to L</math>) אם:
**לכל סביבה של הגבול, קיים מקום בסדרה שאחריו כל איברי הסדרה נמצאים בסביבה הנתונה, כלומר:
**לכל מרחק <math>\varepsilon>0</math> קיים מקום <math>NK\in\mathbb{N}</math> כך שאחריו לכל <math>n>NK</math> מתקיים כי <math>|a_n-L|<\varepsilon</math>
*נגדיר ש<math>a_n\to\infty</math> אם לכל <math>M>0</math> קיים <math>NK\in\mathbb{N}</math> כך שלכל <math>n>NK</math> מתקיים כי <math>a_n>M</math>
*נגדיר ש<math>a_n\to -\infty</math> אם <math>-a_n\to\infty</math>
**אם <math>a>1</math> מתקיים כי <math>(a_n)^n \to \infty</math>
**אם <math>a<1</math> מתקיים כי <math>(a_n)^n\to 0</math>
*שימו לב כי ייתכן ו<math>1><a_n\to 1</math>, כלומר איברי הסדרה גדולים מ1 אך גבולה הוא 1 ואז המשפט אינו תקף.
<videoflash>hFa7Nv5o05M</videoflash>
 
===כלל המנה===
====גבול עליון וגבול תחתון====
 
*תהי סדרה <math>a_n</math>
*נגדיר את הגבול העליון שלה (limsup):
**אם <math>a_n</math> אינה חסומה מלעיל אזי <math>\overline{\lim}a_n=\infty</math>
**אם <math>a_n</math> חסומה מלעיל ויש לה גבול חלקי סופי כלשהו, נגדיר את <math>\overline{\lim}a_n</math> להיות החסם העליון של קבוצת הגבולות החלקיים של הסדרה
**אחרת, נגדיר <math>\overline{\lim}a_n=-\infty</math>
*נגדיר את הגבול התחתון שלה (liminf):
**אם <math>a_n</math> אינה חסומה מלרע אזי <math>\underline{\lim}a_n=-\infty</math>
**אם <math>a_n</math> חסומה מלרע ויש לה גבול חלקי סופי כלשהו, נגדיר את <math>\underline{\lim}a_n</math> להיות החסם התחתון של קבוצת הגבולות החלקיים של הסדרה
**אחרת, נגדיר <math>\underline{\lim}a_n=\infty</math>
 
 
 
*לכל גבול חלקי L של הסדרה מתקיים כי:
*<math>\underline{\lim}a_n\leq L\leq \overline{\lim}a_n</math>
 
 
<videoflash>n71Zy87PbEE</videoflash>
 
 
 
*הגבול העליון והגבול התחתון הם גבולות חלקיים (כלומר יש תת סדרה ששואפת לגבול העליון, ויש תת סדרה ששואפת לגבול התחתון).
 
 
<videoflash>zF_5NdFJbAg</videoflash>
 
 
*לכל <math>-\infty\leq L\leq \infty</math> מתקיים כי <math>a_n \to L</math> אם ורק אם <math>\underline{\lim}a_n=\overline{\lim}a_n=L</math>
 
 
<videoflash>j4C_2yvKpN0</videoflash>
 
 
 
====תתי סדרות המכסות סדרה====
 
 
*אם ניתן לחלק סדרה למספר סופי של תתי סדרות המכסות את כולה, וכולן שואפות לאותו הגבול - אזי הסדרה כולה שואפת לגבול זה.
*ייתכן שניתן לחלק סדרה לאינסוף תתי סדרות שכולם שואפות לאותו הגבול, אך הסדרה לא תשאף לגבול זה.
 
 
<videoflash>Y0Jpalk44do</videoflash>
===כלל הe===
*אם תהי <math>0\neq a_n\to\infty0</math> אזי <math>\left(1+\frac{1}{a_n}\right)^{a_n}\to e</math>**<math>[a_n]\leq a_n \leq [a_n]+1</math>, כאשר <math>[a_n]</math> הוא המספר השלם הגדול ביותר שקטן או שווה ל<math>a_n</math>.**<math>\left(1+\frac{1}{[a_n]+1}\right)^{[a_n]}\leq\left(1+\frac{1}{a_n}\right)^{a_n}\leq \left(1+\frac{1}{[a_n]}\right)^{[a_n]+1}</math>**שני הצדדים שואפים לe ולכן לפי כלל הסנדוויץ הסדרה אכן שואפת לe.*אם <math>a_n\to -\infty</math> אזי <math>\left(1+\frac{1}{a_n}\right)^{a_n}\to e</math>**ראשית  <mathvideoflash>\left(1-\frac{1}{n}\right)^{n}\to \frac{1}{e}y7yPjqyGOIg</mathvideoflash> (הוכחה בקישור לערך על המספר e).**כעת חזקה שלילית הופכת את השבר, וניתן לסיים את ההוכחה באופן דומה להוכחה במקרה הקודם.
*דוגמא:
**<math>\lim\left(\frac{n+1}{n-2}\right)^n=e^{\lim n\cdot\left(\frac{n+1}{n-2}-1\right)}=e^{\lim\frac{3n}{n-2}}=e^3</math>
 
 
<videoflash>5V4EmQIdE90</videoflash>
===חשבון גבולות (אריתמטיקה של גבולות)===
**<math>0^\infty = 0</math>
**אינסוף כפול סדרה השואפת למספר חיובי = אינסוף.
**אינסוף כפול סדרההשואפת למספר שלילי = אינסוף.
**יש גבול סופי + אין גבול סופי = אין גבול סופי.
**אינסוף ועוד חסומה שווה אינסוף.
**אם <math>a>1</math> אזי <math>a^\infty=\infty</math>אינסוף בחזקת מספר חיובי זה אינסוף**חזקת סדרות שואפת לחזקת הגבולותסדרה השואפת לגבול גדול מאחד, בחזקת אינסוף זה אינסוף.**סדרה השואפת לגבול בין מינוס אחד לאחד לא כולל, בחזקת אינסוף, זה אפס. 
====המקרים הבעייתיים====
*המקרים הבעייתיים בהם צריך להפעיל מניפולציות אלגבריות או משפטים על מנת לחשב את הגבול:
**<math>\frac{0}{0},\frac{\infty}{\infty},0\cdot\infty,\infty-\infty,0^0,\infty^0,1^\infty</math>
 
===קריטריון קושי לסדרות===
 
*דוגמא: הסדרה <math>a_n=\sqrt{n}</math> מקיימת כי <math>a_{n+1}-a_n\to 0</math> אך היא אינה מתכנסת למספר סופי אלא שואפת לאינסוף.
 
 
*הגדרה: סדרה <math>a_n</math> מקיימת את '''קריטריון קושי''' (ונקראת '''סדרת קושי''') אם:
*לכל מרחק <math>\varepsilon>0</math> קיים מקום <math>K\in\mathbb{N}</math> כך שאחריו לכל זוג מקומות <math>m>n>K</math> מתקיים כי <math>|a_m-a_n|<\varepsilon</math> (המרחק בין האיברים במקומות הללו קטן מאפסילון).
 
 
*משפט: בממשיים, סדרה מתכנסת לגבול סופי אם ורק אם היא סדרת קושי.
 
 
*תרגיל: תהי סדרה המקיימת לכל n כי <math>|a_{n+1}-a_n|<\frac{1}{2^n}</math> אזי היא מתכנסת למספר סופי.
 
 
<videoflash>S56cCgc9U38</videoflash>
==פרק 3 - טורים==
===מבוא והגדרה===
<videoflash>E3DLm1YxOko</videoflash>
 
===התכנסות בהחלט===
 
 
===מבחני התכנסות לטורים חיוביים===
 
 
====מבחני ההשוואה====
 
 
====מבחני השורש והמנה====
 
 
====מבחן העיבוי====
 
===מבחני התכנסות לטורים כלליים===
 
====מבחן לייבניץ====
 
====מבחן דיריכלה====
 
 
===משפט רימן על שינוי סדר הסכימה===
 
===סיכום 🖖===
 
*כיצד נבחן אם הטור <math>\sum a_n</math> מתכנס בהחלט, בתנאי או מתבדר?
 
#אם ניתן להראות כי <math>a_n\not\to 0</math> הטור מתבדר
# נבצע מבחני ספוק 🖖
##אם לפי מבחני ההשוואה (הראשון או הגבולי) הטור <math>\sum |a_n|</math> אינו מתכנס, אז אין התכנסות בהחלט, נעבר לבדוק התכנסות בתנאי.
##אם במבחן המנה או השורש הגבול גדול מ1 הטור מתבדר, אם קטן מ1 הטור מתכנס בהחלט ואם שווה ל1 צריך לנסות משהו אחר.
##אם במבחן העיבוי הטור <math>\sum |a_n|</math> אינו מתכנס, אז אין התכנסות בהחלט, נעבר לבדוק התכנסות בתנאי.
#אם לא מצאנו התכנסות בהחלט, נבצע מבחנים על טורים כלליים בשביל לבדוק התכנסות בתנאי
##מבחן לייבניץ
##מבחן דיריכלה
##עבודה ישירה על סדרת הסכומים החלקיים (טור טלסקופי למשל)
==פרק 4 - פונקציות ורציפות==
===מבוא לגבולות===
 
<videoflash>OMJWXoSIlX0</videoflash>
 
 
*מבוא לגבולות (שיטות אלגבריות: כפל בצמוד, הוצאת חזקה משמעותית).
**<math>\lim_{x\to 2}\frac{x^2-4}{x-2}</math>
===הגדרת הגבול לפי קושי===
 
* <math>\lim_{x\to x_0}f(x)=L</math> אם לכל סביבה של L בציר y קיימת סביבה של <math>x_0</math> בציר x, כך שלכל ערכי x בסביבה של <math>x_0</math> פרט אולי ל<math>x_0</math> עצמו, ערכי ציר y כלומר <math>f(x)</math> נמצאים בסביבה של L בציר y.
 
 
*דוגמאות:
**<math>\lim_{x\to 3} 2x+1=7</math> אם לכל <math>\varepsilon>0</math> קיים <math>\delta>0</math> כך שלכל x המקיים <math>0\neq |x-3|<\delta</math> מתקיים <math>|2x+1-7|<\varepsilon </math>
**<math>\lim_{x\to 2^-}\frac{1-x}{\sqrt{2-x}}=-\infty</math> אם לכל <math>M>0</math> קיים <math>\delta>0</math> כך שלכל x המקיים <math>2-\delta<x<2</math> מתקיים כי <math>\frac{1-x}{\sqrt{2-x}}<-M</math>
**<math>y=a</math> אסימפטוטה אופקית מימין של <math>f(x)</math> אם לכל <math>\varepsilon>0</math> קיים <math>K>0</math> כך שלכל x המקיים <math>x>K</math> מתקיים כי <math>|f(x)-a|<\varepsilon</math>
 
 
<videoflash>YTA4sI56t1Y</videoflash>
===הגדרת הגבול לפי היינה===
 
*<math>\lim_{x\to x_0}f(x)=L</math> אם לכל סדרת מספרים על ציר איקס <math>x_0\neq a_n\to x_0</math> סדרת המספרים על ציר y מקיימת <math>f(a_n)\to L</math>
*<math>\lim_{x\to x_0^+}f(x)=L</math> אם לכל סדרת מספרים על ציר איקס <math>x_0< a_n\to x_0</math> סדרת המספרים על ציר y מקיימת <math>f(a_n)\to L</math>
*<math>\lim_{x\to x_0^-}f(x)=L</math> אם לכל סדרת מספרים על ציר איקס <math>x_0> a_n\to x_0</math> סדרת המספרים על ציר y מקיימת <math>f(a_n)\to L</math>
 
הגדרה זו שקולה להגדרה של קושי, כלומר הגבול שווה לL לפי קושי אם ורק אם הוא שווה לL לפי היינה.
*מרבית כללי האריתמטיקה המורחבות נובעים "בחינם" עבור פונקציות
*<math>\lim_{x\to x_0}f(x)=L</math> אם ניתן לחלק סדרה לתתי סדרות שכולן מתכנסות לאותו גבול, אזי זה גבול הסדרה.*מסקנה: גבול של פונקציה קיים בנקודה ורק אם"ם הגבולות החד צדדיים קיימים ושווים לו.<math>\lim_{x\to x_0^+}f(x)=\lim_{x\to x_0^-}f(x)=L</math>  <videoflash>KKFyEBxM9yo</videoflash>
===הפונקציות הטריגונומטריות===
<videoflash>gnUkKM9PgPQ</videoflash>
*ראינו ש<math>\lim_{x\to 0}\frac{sin(x)}{x}=1</math>.
*שימו לב ש<math>\lim_{x\to\infty}\frac{sin(x)}{x}=0</math>, כיוון שמדובר בחסומה חלקי שואפת לאינסוף.
 
 
<videoflash>YIU0hc8xe7I</videoflash>
===רציפות===
*טענה: אם f רציפה ב<math>x_0</math> אזי לכל סדרה <math>x_n\to x_0</math> (גם אם אינה שונה מ<math>x_0</math>) מתקיים כי <math>f(x_n)\to f(x_0)</math>.
 
 
<videoflash>9y7T2Nmpv24</videoflash>
 
 
*הרכבת רציפות: תהי f רציפה ב<math>x_0</math> ותהי g רציפה ב<math>f(x_0)</math>. אזי <math>g\circ f</math> רציפה ב<math>x_0</math>.
**הוכחה: