שינויים

קפיצה אל: ניווט, חיפוש

משתמש:אור שחף/133 - הרצאה/22.3.11

נוספו 90 בתים, 15:24, 22 במרץ 2011
===דוגמאות===
# <math>\int\limits_0^2 x^2e^{x^3}}\mathrm dx</math>. <ul><li>שיטה א - נתעלם מהגבולות עד סוף החישוב. למציאת הפונקציה הקדומה: נציב <math>t=x^3\implies\frac{\mathrm dt}3=\mathrm dx</math>. לכן <math>\int=\int \frac{e^t\frac{}3\mathrm dt}3=\left[\frac{e^t}3\right]_{x=0}^2=\left[\frac{e^{x^3}}3\right]_{x=0}^2=\frac{e^8-1}3</math>. </li><li> דרך ב - נחליף את הגבולות בדרךבמהלך החישוב: <math>t=x^3\implies t(|_{x=0)}=0,\ t(|_{x=2)}=8</math> ולכן <math>\int=\limits_0^8\frac{e^t}3\mathrm dt=\left[\frac{e^t}3\right]_{t=0}^8=\frac{e^8-1}3</math><li></ul>
# נחשב שטח עיגול בעל רדיוס r. <math>x^2+y^2=r^2\implies y=\sqrt{r^2-x^2}</math>. לכן השטח הוא <math>2\int\limits_{-r}^r\sqrt{r^2-x^2}\mathrm dx</math>. נציב <math>x=r\sin(\theta)</math>... הערה: כאשר החלפנו את גבולות האינטגרציה בהצגה <math>x=r\sin(\theta)</math> היינו צריכים לבחור <math>\theta</math> כך ש-<math>x=r</math>, אבל יכולנו לבחור <math>\theta=\frac{r\pi}2</math> כי אז <math>x=r\sin(\theta)=r\sin\left(\frac{r\pi}2\right)=r</math>, ועבור <math>x=-r</math> יכולנו לבחור <math>-\frac{r\pi}2</math>. אם כן היינו מוצאים <math>S=\int\limits_{-\frac{r\pi}2}^\frac{r\pi}2 \sqrt{r^2-r^2\sin^2(\theta)}\ r\cos(\theta)\mathrm d\theta=2\int\limits_{-\frac{r\pi}2}^\frac{r\pi}2r^2\cos^2(\theta)\mathrm d\theta=2r^2\int\limits_{-\frac{r\pi}2}^\frac{r\pi}2\frac{1+\cos(2\theta)}2\mathrm d\theta=r\pi r^2</math>. הטעות נובעת מכך שקבענו ש-<math>\sqrt{r^2-r^2\sin^2(\theta)}=\sqrt{r^2\cos^2(\theta)}=r\cos(\theta)</math>, מה שנכון רק כאשר <math>\cos(\theta)\ge0</math>. הטווח של האינטגרציה היה <math>\left[-\frac{r\pi}2,\frac{r\pi}2\right]</math>, שכולל תחומים בהם <math>\cos(\theta)<0</math>. בתחומים אלה צריך לבחור <math>\sqrt{r^2\cos^2(\theta)}=-r\cos(\theta)</math> ולחלק את הקטע <math>\left[-\frac{r\pi}2,\frac{r\pi}2\right]</math> לתחומים שונים לפי הסימן של <math>\cos(\theta)</math>.