שינויים

קפיצה אל: ניווט, חיפוש

אינפי 1/סדרות מונוטוניות ומעבר גבול

נוספו 672 בתים, 21:32, 15 בנובמבר 2014
מצאנו שבמקרה שהסדרה מתכנסת, יש רק מועמד אחד שיכול להיות הגבול ( $-1$ נפסל משום שכל איברי הסדרה חיוביים ולכן לא יכולים להתכנס למספר שלילי). אם נצליח להוכיח שהסדרה מתכנסת, הגבול שלה הוא 2. נוכיח שהיא מונוטונית עולה וחסומה ע"י 2:
מונוטונית עולה -
$$ x_n\leq x_{n+1} \Leftrightarrow x_n\leq \sqrt{x_n+2}\Leftrightarrow x_n^2\leq x_n+2\Leftrightarrow -1\leq x_n\leq 2 $$
כלומר הסדרה לא תרד כל עוד האיברים בין $-1$ ל-2. כל איברי הסדרה חיוביים ועכשיו נוכיח שכל איברי הסדרה לא גדולים מ-2 באמצעות אינדוקציה:
$$ x_1=\sqrt{2}<2 , x_n\leq 2\Rightarrow x_{n+1}=\sqrt{x_n+2}\leq\sqrt{2+2}=2 $$
אז כל איברי הסדרה קטנים מ-2 ולכן הסדרה מונוטונית עולה וחסומה ומכאן שמתכנסת ל-2. (את הגבול חישבנו באמצעות מעבר הגבול)
\end{example}
<tex>קוד:זנב</tex>
</latex2pdf>
7
עריכות